Nov 9, 2018 | Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Pathology
Studies show consumer genealogy databases are much broader than is generally known. If your cousins are in such a database, it’s likely you are too
Recent news stories highlighted crime investigators who used the DNA data in consumer genetic genealogy databases to solve cold cases. Though not widely known, such uses of direct-to-consumer DNA databases is becoming more commonplace, which might eventually lead to requests for clinical laboratories to assist in criminal investigations involving DNA data.
Case in point: investigators found the Golden State Killer, a serial killer/rapist/burglar who terrorized multiple California counties over a dozen years in the 1970s to 1980s, after uploading a DNA sample from the crime scene to GEDmatch, an open-data genomics database that features tools for genealogy research. They made the arrest after discovering a distant relative’s DNA in the genealogy database and matching it to the suspect, CBS News revealed in a 60 Minutes Overtime online report.
These and other investigators are using a technique called familial DNA testing (AKA, DNA Profiling), which enables them to use genetic material from relatives to solve crimes.
Clinical laboratories oversee DNA databases. Could DNA databases—developed and managed over years by medical laboratories for patient care—be subpoenaed by law enforcement investigating crimes?
The question raises many issues for society and for labs, including privacy responsibilities and appropriate use of genetic information. On the other hand, the genetic genie is already out of the bottle.
Leveraging Familia DNA to Solve Crimes a New Trend
“The solving of the Golden State Killer case opened this method up as a possibility, and other crime labs are taking advantage of it. Clearly, a trend has started,” Ruth Dickover, PhD, Director of Forensic Science, University of California, Davis, told the Los Angeles Times.
Indeed, the use of familial DNA testing is moving forward. The Verge reported 19 cold case samples have been identified in recent familial DNA testing and public database searches. It also said two new published studies may propel the technique further.
One study, published in the journal Science, suggests nearly every American of European ancestry may soon be identified through familial DNA testing.
The other study, published in Cell, shows that a person’s relatives can be detected when forensic DNA data are compared with consumer genetic databases.
Noah Rosenberg, PhD (above left), Professor of Population Genetics and Society Biology at Stanford University, is shown above working with Jaehee Kim, PhD (right), a Postdoctoral Research Fellow in Biology, on math that could be used to track down relatives in genealogy databases based on forensic DNA. “This could be a way of expanding the reach of forensic genetics, potentially for solving even more cold cases. But at the same time, it could be exposing participants in those databases to forensic searches they might not have anticipated,” he told Wired. (Photo copyright: Stanford University/L.A. Cicero.)
15 Million People Already in Genealogy Databases
Researchers at Columbia University in New York and Hebrew University of Jerusalem told Science they were motivated by the recent trend of investigations leveraging third-party consumer genomics services to find criminals. But they perceived a gap.
“The big limitation is coverage. And even if you find an individual it requires complex analysis from that point,” Yaniv Erlich, PhD, Associate Professor at Columbia and Chief Science Officer at MyHeritage, told The Verge. MyHeritage is an online genealogy platform.
Others offering consumer genetic testing and family history exploration include 23andMe and Ancestry. As of April 2018, more than 15 million people have participated in direct-to-consumer genetic testing, the researchers noted.
The study aimed to find the likelihood that a person can be identified using a long-range familial search. It included these steps and findings:
- Statistical analysis of 1.28 million people in the MyHeritage database;
- Pairs of people with “identity-by-descent” were removed to avoid bias, such as first cousins and closer relationships;
- Researchers aimed at finding a third cousin or closer relatives for each person in the database;
- 60% of the 1.28 million people were matched with a third cousin or closer relative.
“We project that about 60% of the searches for individuals of European-descent will result in a third cousin or closer match, which can allow their identification using demographic identifiers. Moreover, the technique could implicate nearly any US individual of European descent in the near future,” the researchers wrote.
In an interview with Wired, Erlich added, “The takeaway is it doesn’t matter if you’ve been tested or not tested. You can be identified because the databases already cover such large fractions of the US—at least for European ancestry.”
Matching Forensic and Consumer Genetic Data
Meanwhile, the study published in Cell by researchers at Stanford University, University of California, Davis, and the University of Michigan also suggests investigators could compare forensic DNA samples with consumer genetic databases to find people related to criminals.
That study found:
- 30% to 32% of people in a forensic database could be related to a child or parent in a consumer database;
- 35% to 36% could be tied to a sibling.
These studies reveal that genetic data and familial DNA testing can help law enforcement find suspects, which is a good thing for society. But people who uploaded DNA data to some direct-to-consumer databases may find themselves caught up in searches they do not know about. So may their cousins.
Dark Daily recently covered other similar studies that showed it takes just one person’s DNA to reveal genetic information on an entire family. (See, “The Problems with Ancestry DNA Analyses,” October 18, 2018.) These developments in the use of DNA databases to identify criminals should be an early warning to clinical laboratories building databases of genetic information that, at some future point, law enforcement agencies might want access to those databases as part of ongoing criminal investigations.
—Donna Marie Pocius
Related Information:
Could Your DNA Help Solve a Cold Case?
So Many People Have Had Their DNA Sequenced That They’ve Put Other People’s Privacy in Jeopardy
The DNA Technique That Caught the Golden State Killer is More Powerful than We Thought
Identity Inference of Genomic Data Using Long-Range Familial Searches
Statistical Detection of Relatives Typed with Disjoint Forensic and Biomedical Loci
Genome Hackers Show No One’s DNA is Anonymous Anymore
Stanford Researchers Discover a New Way to Find Relatives from Forensic DNA
The Problems with Ancestry DNA Analyses
Oct 12, 2018 | Compliance, Legal, and Malpractice, Instruments & Equipment, Laboratory Instruments & Laboratory Equipment, Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Laboratory Testing, Management & Operations
Diagnostic medical laboratories may sequence DNA genetic tests correctly, but there are issues with how companies analyze the information
In 2017, some 12 million people paid to spit in a tube and have their genetic data analyzed, according to Technology Review. Many companies offer this type of DNA testing, and each of them works with one or more clinical laboratories to get the actual sequencing performed. For example, Ancestry.com, one of the largest direct-to-consumer genetic data testing companies, works with both Quest Diagnostics and Illumina.
In the case of Quest Diagnostics, the clinical laboratory company does the actual sequencing for Ancestry. But the analysis of the genetic data for an individual and its interpretation is performed by Ancestry’s team.
There are critics of the booming direct-to-consumer genetic testing business, but it’s not due to the quality of the sequencing. Rather, critics cite other issues, such as:
- Privacy concerns;
- How the physical samples are stored and used;
- Who owns the data; and,
- That this branch of genetics is an area of emerging study and not clearly understood.
What Does All That Genetic Data Mean?
The consumer DNA testing market was worth $359 million dollars in 2017 and is projected to grow to $928 million by 2023, according to a report from Research and Markets. Those numbers represent a lot of spit, and an enormous amount of personal health information. As of now, some one in every 25 adults in the US has access to their genetic data. But, what does all that data mean?
The answer depends, in large part, on who you ask. Many reporters, scientists, and others have taken multiple DNA tests from different companies and received entirely different results. In some cases, the sequencing from one sample submitted to different companies for analysis have rendered dramatically different results.
“There is a wild-west aspect to all of this,” Erin Murphy, a New York University law professor and genetics specialist who focuses on privacy implications, told McClatchy. “It just takes one person in a family to reveal the genetic information of everyone in the family,” she notes. (Photo copyright: New York University.)
It’s All About the Database
Although some people purchase kits from multiple companies, the majority of people take just one test. Each person who buys genetic analysis from Ancestry, for example, consents to having his/her data become part of Ancestry’s enormous database, which is used to perform the analyses that people pay for. There are some interesting implications to how these databases are built.
First, they are primarily made up of paying customers, which means that the vast majority of genetic datasets in Ancestry’s database come from people who have enough disposable income to purchase the kit and analysis. It may not seem like an important detail, but it shows that the comparison population is not the same as the general population.
Second, because the analyses compare the sample DNA to DNA already in the database, it matters how many people from any given area have taken the test and are in the database. An article in Gizmodo describes one family’s experience with DNA testing and some of the pitfalls. The author quotes a representative from the company 23andMe as saying, “Different companies have different reference data sets and different algorithms, hence the variance in results. Middle Eastern reference populations [for example] are not as well represented as European, an industry-wide challenge.”
The same is true for any population where not many members have taken the test for a particular company. In an interview with NPR about trying to find information about her ancestry, journalist Alex Wagner described a similar problem, saying, “There are not a lot of Burmese people taking DNA tests … and so, the results that were returned were kind of nebulous.”
Wagner’s mother and grandmother both immigrated to the US from Burma in 1965, and when Wagner began investigating her ancestry, she, both of her parents, and her grandmother, all took tests from three different direct-to-consumer DNA testing companies. To Wagner’s surprise, her mother and grandmother both had results that showed they were Mongolian, but none of the results indicated Burmese heritage. In the interview she says that one of the biggest things she learned through doing all these tests was that “a lot of these DNA test companies [are] commercial enterprises. So, they basically purchase or acquire DNA samples on market-demand.”
As it turns out, there aren’t many Burmese people taking DNA tests, so there’s not much reason for the testing companies to pursue having a robust Burmese or even Southeast Asian database of DNA.
Who Owns Your Genetic Data?
As is often the case when it comes to technological advances, existing law hasn’t quite caught up with the market for ancestry DNA testing. There are some important unanswered questions, such as who owns the data that results from a DNA analysis?
An investigation conducted by the news organization McClatchy found that Ancestry does allow customers to request their DNA information be deleted from the company’s database, and that they can request their physical sample be destroyed as well. The author writes, “But it is a two-step process, and customers must read deep into the company’s privacy statement to learn how to do it. Requests for DNA data elimination can be made online, but the company asks customers to call its support center to request destruction of their biological sample.”
Another concern is hacking or theft. Ancestry and similar companies take steps to protect customers’ information, such as using barcodes rather than names and encryption when samples are sent to labs. Nevertheless, there was an incident in 2017 in which hackers infiltrated a website owned by Ancestry called RootsWeb. “The RootsWeb situation was certainly unfortunate,” Eric Heath, Ancestry’s Chief Privacy Officer, told McClatchy. He added that RootsWeb was a “completely separate system” from the Ancestry database that includes DNA information.
What We Don’t Know
The biggest pitfall for consumers may be that geneticists don’t know very much about DNA analysis. Adam Rutherford, PhD, is a British geneticist who interviewed for the Gizmodo story. He said that the real problem with companies like Ancestry is that people have a basic, fundamental misunderstanding of what can be learned from a DNA test.
“They’re not telling you where your DNA comes from in the past. They’re telling you where on Earth your DNA is from today,” Rutherford told Gizmodo.
Science evolves, of course, and genetic testing has much evolving to do. The author of the Gizmodo piece writes, “It’s not that the science is bad. It’s that it’s inherently imperfect.” There aren’t any best-practices for analyzing DNA data yet, and companies like Ancestry aren’t doing much to make sure their customers understand that fact.
Nevertheless, issues surrounding genetic testing, the resulting data, and its storage, interpretation, and protection, continue to impact clinical laboratories and anatomic pathology groups.
—Dava Stewart
Related Information:
2017 Was the Year Consumer DNA Testing Blew Up
Quest Diagnostics and Ancestry DNA Collaborate to Expand Consumer DNA Testing
Illumina, Secret Giant of DNA Sequencing, Is Bringing Its Tech to the Masses
Global $928 Million Consumer DNA (Genetic) Testing Market 2018-2023 with 23andMe, Ancestry, Color Genomics and Gene by Gene Dominating
How DNA Testing Botched My Family’s Heritage, and Probably Yours, Too
A Journalist Seeks Out Her Roots but Finds Few Answers in the Soil
Ancestry Wants Your Spit, Your DNA and Your Trust. Should You Give Them All Three?
Oct 8, 2018 | Laboratory Management and Operations, Laboratory News, Laboratory Operations, Laboratory Pathology, Laboratory Testing
Both health systems will use their EHRs to track genetic testing data and plan to bring genetic data to primary care physicians
Clinical laboratories and pathology groups face a big challenge in how to get appropriate genetic and molecular data into electronic health record (EHR) systems in ways that are helpful for physicians. Precision medicine faces many barriers and this is one of the biggest. Aside from the sheer enormity of the data, there’s the question of making it useful and accessible for patient care. Thus, when two major healthcare systems resolve to accomplish this with their EHRs, laboratory managers and pathologists should take notice.
NorthShore University HealthSystem in Illinois and Geisinger Health System in Pennsylvania and New Jersey are working to make genetic testing part of primary care. And both reached similar conclusions regarding the best way for primary care physicians to make use of the information.
One area of common interest is pharmacogenomics.
At NorthShore, two genetic testing programs—MedClueRx and the Genetic and Wellness Assessment—provide doctors with more information about how their patients metabolize certain drugs and whether or not their medical and family histories suggest they need further, more specific genetic testing.
“We’re not trying to make all of our primary care physicians into genomic experts. That is a difficult strategy that really isn’t scalable. But we’re giving them enough tools to help them feel comfortable,” Peter Hulick, MD, Director of the Center for Personalized Medicine at NorthShore, told Healthcare IT News.
Conversely, Geisinger has made genomic testing an automated part of primary care. When patients visit their primary care physicians, they are asked to sign a release and undergo whole genome sequencing. An article in For the Record describes Geisinger’s program:
“The American College of Medical Genetics and Genomics classifies 59 genes as clinically actionable, with an additional 21 others recommended by Geisinger. If a pathogenic or likely pathogenic variant is found in one of those 80 genes, the patient and the primary care provider are notified.”
William Andrew Faucett (left) is Director of Policy and Education, Office of the Chief Scientific Officer at Geisinger Health; and Peter Hulick, MD (right), is Director of the Center for Personalized Medicine at NorthShore University HealthSystem. Both are leading programs at their respective healthcare networks to improve precision medicine and primary care by including genetic testing data and accessibility to it in their patients’ EHRs. (Photo copyrights: Geisinger/NorthShore University HealthSystem.)
The EHR as the Way to Access Genetic Test Results
Both NorthShore and Geisinger selected their EHRs for making important genetic information accessible to primary care physicians, as well as an avenue for tracking that information over time.
Hulick told Healthcare IT News that NorthShore decided to make small changes to their existing Epic EHR that would enable seemingly simple but actually complex actions to take place. For example, tracking the results of a genetic test within the EHR. According to Hulick, making the genetic test results trackable creates a “variant repository,” also known as a Clinical Data Repository.
“Once you have that, you can start to link it to other information that’s known about the patient: family history status, etc.,” he explained. “And you can start to build an infrastructure around it and use some of the tools for clinical decision support that are used in other areas: drug/drug interactions, reminders for flu vaccinations, and you can start to build on those decision support tools but apply them to genomics.”
Like NorthShore, Geisinger is also using its EHR to make genetic testing information available to primary care physician when a problem variant is identified. They use EHR products from both Epic and Cerner and are working with both companies to streamline and simplify the processes related to genetic testing. When a potentially problematic variant is found, it is listed in the EHR’s problem list, similar to other health issues.
Geisinger has developed a reporting system called GenomeCOMPASS, which notifies patients of their results and provides related information. It also enables patients to connect with a geneticist. GenomeCOMPASS has a physician-facing side where primary care doctors receive the results and have access to more information.
Andrew Faucett, Senior Investigator (Professor) and Director of Policy and Education, Office of the Chief Scientific Officer at Geisinger, compares the interpretation of genetic testing to any other kind of medical testing. “If a patient gets an MRI, the primary care physicians doesn’t interpret it—the radiologist does,” adding, “Doctors want to help patients follow the recommendations of the experts,” he told For the Record.
The Unknown Factor
Even though researchers regularly make new discoveries in genomics, physicians practicing today have had little, if any, training on how to incorporate genetics into their patients’ care. Combine that lack of knowledge and training with the current lack of EHR interoperability and the challenges in using genetic testing for precision medicine multiply to a staggering degree.
One thing that is certain: the scientific community will continue to gather knowledge that can be applied to improving the health of patients. Medical pathology laboratories will play a critical role in both testing and helping ensure results are useful and accessible, now and in the future.
—Dava Stewart
Related Information:
Introducing “Genomics and Precision Health”
How NorthShore Tweaked Its Epic EHR to Put Precision Medicine into Routine Clinical Workflows
Precise, Purposeful Health Care
Next-Generation Laboratory Information Management Systems Will Deliver Medical Laboratory Test Results and Patient Data to Point of Care, Improving Outcomes, Efficiency, and Revenue
Apr 9, 2018 | Laboratory Pathology
Direct-to-consumer (DTC) genetic testing has been much in the news of late and clinical laboratories, anatomic pathology groups, and biomedical researchers have a stake in how the controversy plays out.
While healthcare consumers seem enamored with the idea of investigating their genomic ancestry in growing numbers, the question of how the data is collected, secured, and distributed when and to whom, is under increased scrutiny by federal lawmakers, bioethicists, and research scientists.
However, should public demand for DTC testing find support in Congress, some lab companies offering direct-to-consumer genetic tests could find their primary source of revenue curtailed.
DTC Sales Skyrocket as FDA Authorizes Genetic Tests for Certain Chronic Diseases
Dark Daily reported last fall on one company that had its plans to distribute thousands of free genetic tests at a football game suspended due to privacy concerns. (See, “State and Federal Agencies Throw Yellow Flag Delaying Free Genetic Tests at NFL Games in Baltimore—Are Clinical Laboratories on Notice about Free Testing?” October 13, 2017.)
Nevertheless, consumer demand for DTC tests continues to rise. In a press release, Ancestry, a family genetic history and consumer genomics company, reported:
- Record sales of AncestryDNA kits during the 2017 four-day Black Friday to Cyber Monday weekend, selling more than 1.5 million kits; and,
- The 2017 sales were triple the amount of kits sold during the same period in 2016.
Possibly helping the sale of DTC genetic tests may be the US Food and Drug Administration (FDA) authorization last year of 23andMe’s Personal Genome Service Genetic Health Risk tests for 10 diseases or conditions, including:
Senator Calls for Investigation of DTC Genetic Test Company Use of Patient Data
These are impressive sales. However, medical professionals may wonder how so much genetic data can be kept private by the testing companies. And medical laboratory leaders are not the only ones asking about privacy and the use of genetic test results.
In a November press conference, Senate Minority Leader Chuck Schumer called on the Federal Trade Commission (FTC) to look into genetic testing companies’ privacy and disclosure practices, noted NBC News.
“What those companies can do with all that data—your most sensitive and deepest info, your genetics—is not clear, and in some cases not fair and not right,” stated Schumer.
Congress took action in 2008 by passing the Genetic Information and Nondiscrimination Act (GINA), which bans employers and insurers from making decisions about people based on genetic predispositions to disease.
However, lawmakers also recently introduced House Bill 1313, the Preserving Employee Wellness Programs Act. It reads, in part, “… the collection of information about the manifested disease or disorder of a family member shall not be considered an unlawful acquisition of genetic information with respect to another family as part of a workplace wellness program offered by an employer ….”
“We’re injecting terrible opportunities for discrimination in the workplace,” Robert Green, MD, Professor of Medicine (Genetics) at Harvard Medical School, told Gizmodo.
Robert C. Green, MD, MPH (above), Professor of Medicine, Harvard Medical School; Associate Physician, Brigham and Women’s Hospital; Geneticist, Brigham and Women’s Hospital; and Director, Genomes2People Research Program at Brigham and Women’s Hospital, believes weak genetic privacy laws are inhibiting research and clinical care. “People decline genetic tests because of concerns over privacy and genetic discrimination, especially insurance discrimination,” he told Gizmodo. “This is stymying biomedical research and people’s access to healthcare.” (Photo copyright: Harvard Medical School.)
HIPAA Enables Selling of Anonymized Patient Genetic Data
Peter Pitts, former FDA Associate Commissioner, and President and Co-founder of the Center for Medicine in the Public Interest, a non-profit medical issues research group, blames the release of data by DTC genetic test companies on the Health Insurance Portability and Accountability Act (HIPAA), a law he says makes way for “anonymized” sale of patient data.
“The Portability Act was passed when genetic testing was just a distant dream on the horizon of personalized medicine,” Pitts wrote in a Forbes commentary. “But today that loophole has proven to be a cash cow. 23andMe has sold access to its database to at least 13 outside pharmaceutical firms … AncestryDNA recently announced a lucrative data-sharing partnership with the biotech company Calico.”
For its part, in an online privacy statement, 23andMe noted, “We will use your genetic information or self-reported information and share it with third parties for scientific research purposes only if you sign the appropriate consent document.”
Similarly, Ancestry points out in its posted privacy statement, “We share your genetic information with research partners only when you provide us with your express consent to do so through our informed consent to research.
Consumers Speak Out on Privacy; States Study Laws and Genetic Testing by Research Hospitals
How do consumers feel about the privacy of their genetic test data? According to a news release, a survey by 23andMe found the following:
- 80% of Americans are concerned about DNA testing privacy; however,
- 88% have no awareness or understanding of what testing companies do to protect information; and,
- 74% of people are, nonetheless, interested in genetic testing.
Meanwhile, as states promulgate various genetic privacy laws, a paper published at SSRN by researchers at the Massachusetts Institute of Technology (MIT) and the University of Virginia (UV) examined how different state laws affect patients’ decisions about having genetic testing performed at various research hospitals.
The MIT/UV study focused on genetic testing by research hospitals as opposed to the DTC genetic testing by private companies. The paper explained that states have one of three types of laws to protect patients’ privacy in genetic testing:
- “Require the provider to notify the individual about potential privacy risks;
- “Restrict discriminatory use of genetic data by employers or insurance companies; and,
- “Limit redisclosure without consent.”
Findings, netted from more than 81,000 respondents, suggest:
- When genetic data are explained in state laws as patient property, more tests are performed;
- Conversely, state laws that focus on risk, and ask patients to consent to risk, lead to less people giving the go-ahead for genetic testing.
“We found a positive effect [on the number of tests] was an approach where you gave patients the potential to actually control their own data,” Catherine Tucker, PhD, Distinguished Professor of Management at MIT and one of the study researchers, told MIT News.
Whether the provider of genetic tests is a private testing company or a research hospital’s clinical laboratory, privacy continues to be a concern, not just to physicians but to federal lawmakers as well. Nevertheless, healthcare consumers and patients who receive comprehensible information about how their genetic data may be used seem to be agreeable to it. At least for now, that is.
—Donna Marie Pocius
Related Information:
AncestryDNA Breaks Holiday Sales Record Black Friday to Cyber Monday
Senator Calls for More Scrutiny of Home DNA Test Industry
The Present and Future Asymmetry of Consumer Genetic Testing
Are Our Terrible Genetic Privacy Laws Hurting Science?
The Privacy Delusions of Genetic Testing
National Survey Shows Strong Interest in DNA Testing
Privacy Protection, Personalized Medicine, and Genetic Testing
How Privacy Policies Affect Genetic Testing
State and Federal Agencies Throw Yellow Flag Delaying Free Genetic Tests at NFL Games in Baltimore—Are Clinical Laboratories on Notice about Free Testing?
Jan 12, 2018 | Laboratory Pathology
Clinical labs and pathology groups know how advances in targeted therapies and genomics far outpace providers’ and patients’ ability to know how best to use and pay for them.
One fascinating development on the road to precision medicine is that many new cancer drugs now in clinical trials will require a companion genetic test to identify patients with tumors that will respond to a specific therapeutic drug.
This implies more genetic testing of tumors, a prospect that challenges both the Medicare program and private health insurers because they already struggle to cope with the flood of new genetic tests and molecular diagnostic assays. However, even as this genetic testing wave swamps payers, some pharmaceutical companies have cancer drugs for rare types of cancers and these companies would like to see more genetic testing of tumors.
Pathologists and clinical laboratory managers will find this to be precisely the dilemma facing specialty pharma company Loxo Oncology (NASDAQ:LOXO), a biopharmaceutical company located in San Francisco and Stamford, Conn.
Loxo is developing larotrectinib (LOXO-101), a “selective TRK inhibitor.” According to a Loxo press release, Larotrectinib is “a potent, oral, and selective investigational new drug in clinical development for the treatment of patients with cancers that harbor abnormalities involving the tropomyosin receptor kinases (TRK receptors).” In short, the drug is designed to “directly target TRK, and nothing else, turning off the signaling pathway that allows TRK fusion cancers to grow.”
How to Find Patients for This Cancer Drug
While a powerful, new, targeted cancer drug will be a boon to cancer therapy, it is only intended for a relatively small number of patients. Loxo estimates that between 1,500 and 5,000 cases of cancer are caused by TRK mutations in the United States each year. Conversely, according to the National Cancer Institute, the total number of new cancer diagnoses in the US in 2016 was 1,685,210.
An article in MIT Technology Review on larotrectinib notes, “To find patients, Loxo will need to convince more doctors to order comprehensive tests that screen multiple genes at once, including TRK.” And that is where things get complicated.
“These advanced genetic tests, which can cost $5,000 or more, are offered by companies like Foundation Medicine, Caris Life Sciences, and Cancer Genetics. The problem is, insurers still consider the tests ‘experimental’ and don’t routinely cover them, meaning patients are often stuck picking up the bill,” notes MIT Technology Review.
Data for the graph above comes from the National Human Genome Research Institute. The graph illustrates the steep decline in cost for whole genome sequencing over the past 17 years. As the cost of genetic testing drops, development of targeted-drug cancer therapies increases. Clinical laboratories and anatomic pathology groups can expect to be performing more such tests in the future. (Graphic copyright: National Human Genome Research Institute/Simple English Wiki.)
To further confuse the market, the National Cancer Institute states that “Insurance coverage of tumor DNA sequencing depends on your insurance provider and the type of cancer you have. Insurance providers typically cover a DNA sequencing test if there is sufficient evidence to support that the test is necessary to guide patient treatment. Tests without sufficient evidence to support their utility may be considered experimental and are likely not covered by insurance.”
Many reliable sources agree. For example, the US National Library of Medicine Genetics Home Reference states, “In many cases, health insurance plans will cover the costs of genetic testing when it is recommended by a person’s doctor.”
That, however, leads to a different conundrum for drug makers such as Loxo: the majority of doctors are not keeping up with the rapid-fire pace of discovery in the realm of genetics and targeted therapies. Some genes like BRCA1 and BRCA2 are familiar enough to doctors that they know how and why they are important. However, most other genes are less known, and critically, less understood by doctors who must also focus on all the other myriad aspects of patient care.
In an article on the Color Genomics $249 Hereditary Cancer Test, which tests for mutations in 30 genes, Timothy Hamill, MD, Professor Emeritus, University of California San Francisco (UCSF) Department of Laboratory Medicine, and former overall director of UCSF’s clinical laboratories, told Wired, “If you talk to docs, they say ‘BRCA, that’s the only thing I’m interested in because I don’t know what to do with the other information.’ Doctors don’t know what to do with it. Patients don’t know what to do with it.”
More Testing Equals More Knowledge
Further complicating the issue, there is an enormous lack of information on how multipanel screenings will affect individuals, public health, and the cost of healthcare in general. Several studies are underway, but they are so new it could be years before any real results become available.
Five years ago, it cost about $20,000 to sequence the whole human genome. Now the average price is $1,500, though there are more and less expensive types of genetic tests. As the cost continues to decline, however, more people will undergo the testing and scientists will learn more about how to identify the best therapy to treat cancers caused by genetic mutations.
—Dava Stewart
Related Information:
Loxo Oncology Announces Positive Top-Line Results from Independent Review Committee Assessment of Larotrectinib Dataset
National Cancer Institute Statistics
Promising New Cancer Drugs Won’t Go Far Unless Everyone Gets Genetic Testing
Tumor DNA Sequencing in Cancer Treatment
Will Health Insurance Cover the Costs of Genetic Testing?
A Single $249 Test Analyzes 30 Cancer Genes. But Do You Need It?
Personal Genome Test Will Sell at New Low Price of $250