News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

US National Institutes of Health All-of-Us Research Program Delivering Genetic Test Results and Personalized Disease Risk Assessments to 155,000 Study Participants

NIH program could lead to new diagnostic biomarkers for clinical laboratory tests across a more diverse segment of US population

In another milestone in the US National Institutes of Health’s (NIH) plan to gather diverse genetic information from one million US citizens and then use that data to inform clinical care in ways consistent with Precision Medicine, the NIH’s All-of-Us Research Program announced in a news release it has “begun returning personalized health-related DNA results” to more than 155,000 study participants.

In addition, those participants who request them will receive genetic reports that detail whether they “have an increased risk for specific health conditions and how their body might process certain medications.”

The All-of-Us program, which began enrolling people in 2018, is one of the world’s largest—if not the largest—project of its kind. It could result in more than a million human whole genome sequences to drive medical research and speed discoveries. Study findings, for example, may produce new biomarkers for clinical laboratory tests and diagnostics.

In 2020, the All-of-Us program “had begun releasing genetic results for ancestry and a small number of nonclinical genetic traits,” according to GenomeWeb. Now, the program is taking on the greater challenge of sharing health-related genetic test results directly with its participants.

“We really wanted to make sure that we are providing a responsible return to our participants,” Anastasia Wise, PhD, All-of-Us Program Director for the Genetic Counseling Resource, told GenomeWeb. “They might get information that’s unexpected,” she explained.

So far, about 10,000 people received the NIH’s invitation and 56% have shown interest in receiving their genetic test results, GenomeWeb noted.

Josh Denny, MD

“Knowledge is powerful,” said Josh Denny, MD (above), Chief Executive Officer, NIH All-of-Us Research Program, in an NIH news release. “By returning health-related DNA information to participants, we are changing the research paradigm, turning it into a two-way street—fueling both scientific and personal discovery that could help individuals navigate their own health,” he added. The NIH’s research could lead to new clinical laboratory precision medicine diagnostics for chronic diseases across a more diverse segment of the US population. (Photo copyright: National Institutes of Health.)

Two Types of Genetic Health Reports

Study participants who provided a blood sample and gave their consent to receiving genomic information may also receive a Hereditary Disease Risk report that includes 59 genes and genetic variants linked to serious and “medically actionable” health conditions.

About 3% to 5% of participants will have findings suggesting a high risk for a genetic disease such as breast and ovarian cancers as indicated by BRCA1 and BRCA2 genes, Medical Xpress reported.

“I kind of shudder to think about what could happen if I hadn’t known this [finding that she has the BRCA2 gene],” said Rachele Peterson, All-of-Us Chief of Staff, who spoke to the Associated Press about her receiving own Hereditary Disease Risk report.

Participants can also choose to receive an All-of-Us Medicine and Your DNA report with insights on seven genes that affect how specific medications are metabolized. This pharmacogenetics report is important for those who could learn, for example, that they have a 50% to 60% greater risk of a second heart attack when they continue to take the standard medication, as opposed to a different medication, Medical Xpress noted.

“The information on metabolizing medication can be particularly important for people who need treatment after a heart attack,” Josh Denny, MD, Chief Executive Officer, NIH All-of-Us Research Program, told Medical Xpress.

“Such transparency of genetic information about a massive group—as well as the genetic information on individuals—can be used to improve patient care and clinical outcomes,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report.

“The program provides a roadmap for other healthcare organizations to follow. And this is useful strategic knowledge for clinical laboratory leaders to understand and incorporate into their plans to support precision medicine with genetic testing and whole human genome sequencing,” Michel added.

Rich Genetic Data Across a More Diverse Population

As to its goal to reflect national diversity, NIH reported about 80% of All-of-Us participants reside in communities that have been unrepresented in medical research, and that 50% are part of a racial or ethnic minority group.

In “NIH’s All-of-Us Research Program Offers Free Genetic Testing to Increase Diversity of Its Database,” Dark Daily reported on the NIH’s strategy to increase diversity of its All-of-Us database. At that time, 386,000 people were enrolled with 278,000 consenting to all program steps such as completing surveys, sharing electronic health records (EHR), and giving blood and urine samples. The All-of-Us Research Program has reportedly grown to 560,000 enrollees. 

Another large-scale research program aiming for one million whole genome sequences is the VA’s Million Veteran Program (MVP), which, as Dark Daily noted in “US Department of Veterans Affairs’ Million Veterans Program Receives Its 125,000th Whole Human Genome Sequence from Personalis Inc.,” provides researchers with a rich resource of genetic, health, lifestyle, and military-exposure data collected from questionnaires, medical records, and genetic analyses.

By combining this information into a single database, the MVP promises to advance knowledge about the complex links between genes and health, according to an MVP news release.

Researchers tapping All-of-Us and MVP data may ultimately produce enlightening and impactful study findings, which could enable clinical laboratories to perform new diagnostic precision medicine tests that identify diseases early and save lives.       

Donna Marie Pocius

Related Information:

All-of-Us Research Program Returns Genetic Health-Related Results to Participants

NIU All-of-Us Program Returns First Health-Related Genetic Results to Participants

The All-of-Us Research Program Has analyzed the Results of 155,000 Americans. The Results Are Coming In

Huge US Study Starts Sharing Gene Findings with Participants

NIH’s All-of-Us Study Hits New Milestone: Largest Scale Effort to Provide DNA Results

NIH’s All-of-Us Research Program Returns Health-Related DNA Results to Participants

Department of Veterans Affairs Million Veterans Program Receives Its 125,000 Whole Human Genome Sequence from Personalis, Inc.

NIH’s All-of-Us Research Program Offers Free Genetic Testing to Increase Diversity of Its Database

Common DNA Testing Method Using SNP Chips Struggles to Find Rare Variants Associated with BRCA Test, UK Researchers Find

Results of the UK study confirm for clinical laboratory professionals the importance of fully understanding the design and function of SNP chips they may be using in their labs

Here is another example of a long-established clinical laboratory test that—upon new evidence—turns out to be not as accurate as once thought. According to research conducted at the University of Exeter in Devon, UK, Single-nucleotide polymorphism (SNP) chips (aka, SNP microarrays)—technology commonly used in commercial genetic testing—is inadequate at detecting rare gene variants that can increase breast cancer risk.  

A news release announcing the results of the large-scale study states, “A technology that is widely used by commercial genetic testing companies is ‘extremely unreliable’ in detecting very rare variants, meaning results suggesting individuals carry rare disease-causing genetic variants are usually wrong.”

Why is this a significant finding for clinical laboratories? Because medical laboratories performing genetic tests that use SNP chips should be aware that rare genetic variants—which are clinically relevant to a patient’s case—may not be detected and/or reported by the tests they are running.

UK Researchers Find ‘Shockingly High False Positives’

The objective of the Exeter study published in British Medical Journal (BMJ), titled, “Use of SNP Chips to Detect Rare Pathogenic Variants: Retrospective, Population Based Diagnostic Evaluation,” was “To determine whether the sensitivity and specificity of SNP chips are adequate for detecting rare pathogenic variants in a clinically unselected population.”

The conclusion reached by the Exeter researchers, the BMJ study states, is that “SNP chips are extremely unreliable for genotyping very rare pathogenic variants and should not be used to guide health decisions without validation.”  

Leigh Jackson, PhD, Lecturer in Genomic Medicine at University of Exeter and co-author of the BMJ study, said in the news release, “The number of false positives on rare genetic variants produced by SNP chips was shockingly high. To be clear: a very rare, disease-causing variant detected using [an] SNP chip is more likely to be wrong than right.” 

Caroline Wright, PhD, Professor in Genomic Medicine at the University of Exeter Medical School
In the news release, Caroline Wright, PhD (above), Professor in Genomic Medicine at the University of Exeter Medical School and senior author of the BMJ study, said, “SNP chips are fantastic at detecting common genetic variants, yet we have to recognize that tests that perform well in one scenario are not necessarily applicable to others.” She added, “We’ve confirmed that SNP chips are extremely poor at detecting very rare disease-causing genetic variants, often giving false positive results that can have profound clinical impact. These false results had been used to schedule invasive medical procedures that were both unnecessary and unwarranted.” (Photo copyright: University of Exeter.)

Large-Scale Study Taps UK Biobank Data

The Exeter researchers were concerned about cases of unnecessary invasive medical procedures being scheduled by women after learning of rare genetic variations in BRCA1 (breast cancer type 1) and BRCA2 (breast cancer 2) tests.

“The inherent technical limitation of SNP chips for correctly detecting rare genetic variants is further exacerbated when the variants themselves are linked to very rare diseases. As with any diagnostic test, the positive predictive value for low prevalence conditions will necessarily be low in most individuals. For pathogenic BRCA variants in the UK Biobank, the SNP chips had an extremely low positive predictive value (1-17%) when compared with sequencing. Were these results to be fed back to individuals, the clinical implications would be profound. Women with a positive BRCA result face a lifetime of additional screening and potentially prophylactic surgery that is unwarranted in the case of a false positive result,” they wrote.

Using UK Biobank data from 49,908 participants (55% were female), the researchers compared next-generation sequencing (NGS) to SNP chip genotyping. They found that SNP chips—which test genetic variation at hundreds-of-thousands of specific locations across the genome—performed well when compared to NGS for common variants, such as those related to type 2 diabetes and ancestry assessment, the study noted.

“Because SNP chips are such a widely used and high-performing assay for common genetic variants, we were also surprised that the differing performance of SNP chips for detecting rare variants was not well appreciated in the wider research or medical communities. Luckily, we had recently received both SNP chip and genome-wide DNA sequencing data on 50,000 individuals through the UK Biobank—a population cohort of adult volunteers from across the UK. This large dataset allowed us to systematically investigate the performance of SNP chips across millions of genetic variants with a wide range of frequencies, down to those present in fewer than 1 in 50,000 individuals,” wrote Wright and Associate Professor of Bioinformatics and Human Genetics at Exeter, Michael Weedon, PhD, in a BMJ blog post.

The Exeter researchers also analyzed data from a small group of people in the Personal Genome Project who had both SNP genotyping and sequencing information available. They focused their analysis on rare pathogenic variants in BRCA1 and BRCA2 genes.

The researchers found:

  • The rarer the variant, the less reliable the test result. For example, for “very rare variants” in less than one in 100,000 people, 84% found by SNP chips were false positives.
  • Low positive predictive values of about 16% for very rare variants in the UK Biobank.
  • Nearly all (20 of 21) customers of commercial genetic testing had at least one false positive rare disease-causing variant incorrectly genotyped.
  • SNP chips detect common genetic variants “extremely well.”

Advantages and Capabilities of SNP Chips

Compared to next-gen genetic sequencing, SNP chips are less costly. The chips use “grids of hundreds of thousands of beads that react to specific gene variants by glowing in different colors,” New Scientist explained.

Common variants of BRCA1 and BRCA2 can be found using SNP chips with 99% accuracy, New Scientist reported based on study data.

However, when the task is to find thousands of rare variants in BRCA1 and BRCA2 genes, SNP chips do not fare so well.

“It is just not the right technology for the job when it comes to rare variants. They’re excellent for the common variants that are present in lots of people. But the rarer the variant is, the less likely they are to be able to correctly detect it,” Wright told CNN.

SNP chips can’t detect all variants because they struggle to cluster needed data, the Exeter researchers explained.

“SNP chips perform poorly for genotyping rare genetic variants owing to their reliance on data clustering. Clustering data from multiple individuals with similar genotypes works very well when variants are common,” the researchers wrote. “Clustering becomes more difficult as the number of people with a particular genotype decreases.”

Clinical laboratories Using SNP Chips

The researchers at Exeter unveiled important information that pathologists and medical laboratory professionals will want to understand and monitor. Cancer patients with rare genetic variants may not be diagnosed accurately because SNP chips were not designed to identify specific genetic variants. Those patients may need additional testing to validate diagnoses and prevent harm.

—Donna Marie Pocius

Related Information:

Large-scale Study Finds Genetic Testing Technology Falsely Detects Very Rare Variants

Use of SNP Chips to Detect Rare Pathogenic Variants: Retrospective, Population-Based Diagnostic Evaluation

The Home DNA Kits “Falsely Warning of High Risk of Cancer”: DIY Genetic Tests are “Extremely Unreliable” at Detecting Rare Genetic Variants, Major New Study Warns

SNP Chips Perform Poorly for Detecting Rare Genetic Variants

Chip-based DNA Testing Wrong More than Right for Very Rare Variants

Common Genetic Tests Often Wrong When Identifying Rare Disease-Causing Variants Such as BRCA1and BRCA2, Study Says

VA’s ‘Million Veterans Program’ Research Study Receives Its 100,000th Human Genome Sequence

With improved genetic sequencing comes larger human genome databases that could lead to new diagnostic and therapeutic biomarkers for clinical laboratories

As the COVID-19 pandemic grabbed headlines, the human genome database at the US Department of Veterans Affairs Million Veterans Program (MVP) quietly grew. Now, this wealth of genomic information—as well as data from other large-scale genomic and genetic collections—is expected to produce new biomarkers for clinical laboratory diagnostics and testing.

In December, cancer genomics company Personalis, Inc. (NASDAQ:PSNL) of Menlo Park, Calif., achieved a milestone and delivered its 100,000th whole human genome sequence to the MVP, according to a news release, which also states that Personalis is the sole sequencing provider to the MVP.

The VA’s MVP program, which started in 2011, has 850,000 enrolled veterans and is expected to eventually involve two million people. The VA’s aim is to explore the role genes, lifestyle, and military experience play in health and human illness, notes the VA’s MVP website.

Health conditions affecting veterans the MVP is researching include:

The VA has contracted with Personalis through September 2021, and has invested $175 million, Clinical OMICS reported. Personalis has earned approximately $14 million from the VA. That’s about 76% of the company’s revenue, according to 2nd quarter data, Clinical OMICS noted.

John West and wife Judy West of Personalis headshots
“The VA MVP is the largest whole genome sequencing project in the United States, and this is a significant milestone for both the program and for Personalis,” said John West (above with wife Judy), Founder and CEO of Personalis, in the news release. “Population-scale sequencing projects of this nature represent a cornerstone in our effort to accelerate the advancement of precision medicine across a wide range of disease areas,” he added. (Photo copyright: MIT Technology Review.)

Database of Veterans’ Genomes Used in Current Research

What has the VA gained from their investment so far? An MVP fact sheet states researchers are tapping MVP data for these and other veteran health-related studies: 

  • Gene variations associated with different tumor structures in patients with non-small-cell lung carcinoma.
  • Differentiating between prostate cancer tumors that require treatment and others that are slow-growing and not life-threatening.
  • How genetics drives obesity, diabetes, and heart disease.
  • How data in DNA translates into actual physiological changes within the body.
  • Gene variations and patients’ response to Warfarin.

NIH Research Program Studies Effects of Genetics on Health

Another research program, the National Institutes of Health’s All of Us study, recently began returning results to its participants who provided blood, urine, and/or saliva samples. The NIH aims to aid research into health outcomes influenced by genetics, environment, and lifestyle, explained a news release. The program, launched in 2018, has biological samples from more than 270,000 people with a goal of one million participants.

NIH’s All of Us program partners include:

Dr. Josh Denny CEO of NIH All of Us program headshot
“We’re changing the paradigm for research. Participants are our most important partners in this effort, and we know many of them are eager to get their genetic results and learn about the science they’re making possible,” said Josh Denny, MD, CEO of the NIH’s All of Us research program in the news release. Denny, a physician scientist, was Professor of Biomedical Informatics and Medicine, Director of the Center for Precision Medicine and Vice President for Personalized Medicine at Vanderbilt University Medical Center prior to joining the NIH. (Photo copyright: National Institutes of Health.)

Inclusive Data Could Aid Precision Medicine

The news release notes that more than 80% of biological samples in the All of Us database come from people in communities that have been under-represented in biomedical research.

“We need programs like All of Us to build diverse datasets so that research findings ultimately benefit everyone,” said Brad Ozenberger, PhD, All of Us Genomics Program Director, in the news release.

Precision medicine designed for specific healthcare populations is a goal of the All of Us program.

“[All of Us is] beneficial to all Americans, but actually beneficial to the African American race because a lot of research and a lot of medicines that we are taking advantage of today, [African Americans] were not part of the research,” Chris Crawford, All of US Research Study Navigator, told the Birmingham Times. “As [the All of Us study] goes forward and we get a big diverse group of people, it will help as far as making medicine and treatment that will be more precise for us,” he added.

Large Databases Could Advance Care

Genome sequencing technology continues to improve. It is faster, less complicated, and cheaper to sequence a whole human genome than ever before. And the resulting sequence is more accurate.

Thus, as human genome sequencing databases grow, researchers are deriving useful scientific insights from the data. This is relevant for clinical laboratories because the new insights from studying bigger databases of genomic information will produce new diagnostic and therapeutic biomarkers that can be the basis for new clinical laboratory tests as well as useful diagnostic assays for anatomic pathologists.

—Donna Marie Pocius

Related Information:

Personalis Announces Delivery of the 100,000th Genome to the U.S. Department of Veterans Affairs Million Veteran Program

VA Extends Personalis Contract for Million Veterans Project With $31M Task Order

Million Veteran Program Research Projects

All of Us Research Program Returns First Genetic Results to Participants

All of Us Research: Why Some Get Sick and Others Are in Great Health

At MIT, New DNA Microscopy Maps Cells and Their Genetic Sequences Using Chemicals Rather than Light

Genetic data captured by this new technology could lead to a new understanding of how different types of cells exchange information and would be a boon to anatomic pathology research worldwide

What if it were possible to map the interior of cells and view their genetic sequences using chemicals instead of light? Might that spark an entirely new way of studying human physiology? That’s what researchers at the Massachusetts Institute of Technology (MIT) believe. They have developed a new approach to visualizing cells and tissues that could enable the development of entirely new anatomic pathology tests that target a broad range of cancers and diseases.

Scientists at MIT’s Broad Institute and McGovern Institute for Brain Research developed this new technique, which they call DNA Microscopy. They published their findings in Cell, titled, “DNA Microscopy: Optics-free Spatio-genetic Imaging by a Stand-Alone Chemical Reaction.”

Joshua Weinstein, PhD, a postdoctoral associate at the Broad Institute and first author of the study, said in a news release that DNA microscopy “is an entirely new way of visualizing cells that captures both spatial and genetic information simultaneously from a single specimen. It will allow us to see how genetically unique cells—those comprising the immune system, cancer, or the gut for instance—interact with one another and give rise to complex multicellular life.”

The news release goes on to state that the new technology “shows how biomolecules such as DNA and RNA are organized in cells and tissues, revealing spatial and molecular information that is not easily accessible through other microscopy methods. DNA microscopy also does not require specialized equipment, enabling large numbers of samples to be processed simultaneously.”

The images above, taken from the MIT study, compares optical imaging of a cell population (left) with an inferred visualization of the same cell population based on the information provided by DNA microscopy (right). Scale bar = 100 μm (100 micrometers). This technology has the potential to be useful for anatomic pathologists at some future date. (Photo and caption copyrights: Joshua Weinstein, PhD, et al/Cell.)

New Way to Visualize Cells

The MIT researchers saw an opportunity for DNA microscopy to find genomic-level cell information. They claim that DNA microscopy images cells from the inside and enables the capture of more data than with traditional light microscopy. Their new technique is a chemical-encoded approach to mapping cells that derives critical genetic insights from the organization of the DNA and RNA in cells and tissue.

And that type of genetic information could lead to new precision medicine treatments for chronic disease. New Atlas notes that “ Speeding the development of immunotherapy treatments by identifying the immune cells best suited to target a particular cancer cell is but one of the many potential application for DNA microscopy.”

In their published study, the scientists note that “Despite enormous progress in molecular profiling of cellular constituents, spatially mapping [cells] remains a disjointed and specialized machinery-intensive process, relying on either light microscopy or direct physical registration. Here, we demonstrate DNA microscopy, a distinct imaging modality for scalable, optics-free mapping of relative biomolecule positions.”

How DNA Microscopy Works

The New York Times (NYT) notes that the advantage of DNA microscopy is “that it combines spatial details with scientists’ growing interest in—and ability to measure—precise genomic sequences, much as Google Street View integrates restaurant names and reviews into outlines of city blocks.”

And Singularity Hub notes that “ DNA microscopy, uses only a pipette and some liquid reagents. Rather than monitoring photons, here the team relies on ‘bar codes’ that chemically tag onto biomolecules. Like cell phone towers, the tags amplify, broadcasting their signals outward. An algorithm can then piece together the captured location data and transform those GPS-like digits into rainbow-colored photos. The results are absolutely breathtaking. Cells shine like stars in a nebula, each pseudo-colored according to their genomic profiles.”

“We’ve used DNA in a way that’s mathematically similar to photons in light microscopy,” Weinstein said in the Broad Institute news release. “This allows us to visualize biology as cells see it and not as the human eye does.”

In their study, researchers used DNA microscopy to tag RNA molecules and map locations of individual human cancer cells. Their method is “surprisingly simple” New Atlas reported. Here’s how it’s done, according to the MIT news release:

  • Small synthetic DNA tags (dubbed “barcodes” by the MIT team) are added to biological samples;
  • The “tags” latch onto molecules of genetic material in the cells;
  • The tags are then replicated through a chemical reaction;
  • The tags combine and create more unique DNA labels;
  •  The scientists use a DNA sequencer to decode and reconstruct the biomolecules;
  • A computer algorithm decodes the data and converts it to images displaying the biomolecules’ positions within the cells.
The visualization above was created from data gathered by DNA microscopy, which peers inside individual cells. It demonstrates how DNA microscopy enables scientists to identify different cells (colored dots) within a sample—with no prior knowledge of what the sample looks like. (Photo and caption copyright: Joshua Weinstein, PhD, et al./Cell.)

“The first time I saw a DNA microscopy image, it blew me away,” said Aviv Regev, PhD, a biologist at the Broad Institute, a Howard Hughes Medical Institute (HHMI) Investigator, and co-author of the MIT study, in an HHMI news release. “It’s an entirely new category of microscopy. It’s not just a technique; it’s a way of doing things that we haven’t ever considered doing before.”

Precision Medicine Potential

“Every cell has a unique make-up of DNA letters or genotype. By capturing information directly from the molecules being studied, DNA microscopy opens up a new way of connecting genotype to phenotype,” said Feng Zhang, PhD, MIT Neuroscience Professor,

Core Institute Member of the Broad Institute, and Investigator at the McGovern Institute for Brain Research at MIT, in the HHMI news release.

In other words, DNA microscopy could someday have applications in precision medicine. The MIT researchers, according to Stat, plan to expand the technology further to include immune cells that target cancer.

The Broad Institute has applied for a patent on DNA microscopy. Clinical laboratory and anatomic pathology group leaders seeking novel resources for diagnosis and treatment of cancer may want to follow the MIT scientists’ progress.    

—Donna Marie Pocius

Related Information:

A Chemical Approach to Imaging Cells from the Inside

DNA Microscope Sees “Through the Eyes of the Cell”

DNA Microscopy Offers Entirely New Way to Image Cells

DNA Microscopy: Optics-free Spatio-Genetic Imaging by a Stand-Alone Chemical Reaction

This New Radical DNA Microscope Reimagines the Cellular World

DNA Microscopy Offers a New Way to Image Molecules

DNA Microscope Shows Cells Genetic Material

Saarland University Researchers Use Blood Samples from Zoo Animals to Help Scientists Find Biomarkers That Speed Diagnoses in Humans

Using animal blood, the researchers hope to improve the accuracy of AI driven diagnostic technology

What does a cheetah, a tortoise, and a Humboldt penguin have in common? They are zoo animals helping scientists at Saarland University in Saarbrücken, Germany, find biomarkers that can help computer-assisted diagnoses of diseases in humans at early stages. And they are not the only animals lending a paw or claw.

In their initial research, the scientists used blood samples that had been collected during routine examinations of 21 zoo animals between 2016 and 2018, said a news release. The team of bioinformatics and human genetics experts worked with German zoos Saarbrücken and Neunkircher for the study. The project progresses, and thus far, they’ve studied the blood of 40 zoo animals, the release states.

This research work may eventually add useful biomarkers and assays that clinical laboratories can use to support physicians as they diagnose patients, select appropriate therapies, and monitor the progress of their patients. As medical laboratory scientists know, for many decades, the animal kingdom has been the source of useful insights and biological materials that have been incorporated into laboratory assays.

“Measuring the molecular blood profiles of animals has never been done before this way,” said Andreas Keller, PhD, Saarland University Bioinformatics Professor and Chair for Clinical Bioinformatics, in the news release. The Saarland researchers published their findings in Nucleic Acids Research, an Oxford Academic journal.

“Studies on sncRNAs [small non-coding RNAs] are often largely based on homology-based information, relying on genomic sequence similarity and excluding actual expression data. To obtain information on sncRNA expression (including miRNAs, snoRNAs, YRNAs and tRNAs), we performed low-input-volume next-generation sequencing of 500 pg of RNA from 21 animals at two German zoological gardens,” the article states.

Can Animals Improve the Accuracy of AI to Detect Disease in Humans?

In their research, Saarland scientists rely on advanced next-generation sequencing (NGS) technology and artificial intelligence (AI) to sequence RNA and microRNA. Their goal is to better understand the human genome and cause of diseases.

However, the researchers perceived an inability for AI and machine learning to discern real biomarker patterns from those that just seemed to fit.

“The machine learning methods recognize the typical patterns, for example for a lung tumor or Alzheimer’s disease. However, it is difficult for artificial intelligence to learn which biomarker patterns are real and which only seem to fit the respective clinical picture. This is where the blood samples of the animals come into play,” Keller states in the news release.

“If a biomarker is evolutionarily conserved, i.e. also occurs in other species in similar form and function, it is much more likely that it is a resilient biomarker,” Keller explained. “The new findings are now being incorporated into our computer models and will help us to identify the correct biomarkers even more precisely in the future.”

Andreas Keller, PhD (left), and zoo director Richard Francke (right), hold a pair of radiated tortoises that participated in the Saarland University study. (Photo copyright: Oliver Dietze/Saarland University.)

Microsampling Aids Blood Collection at Zoos

The researchers used a Neoteryx Mitra blood collection kit to secure samples from the animals and volunteers. Dark Daily previously reported on this microsampling technology in, “Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home, and Clinical Laboratories May Advance Toward Precision Medicine Goals,” November 28, 2018.

“Because blood can be obtained in a standardized manner and miRNA expression patterns are technically very stable, it is easy to accurately compare expression between different animal species. In particular, dried blood spots or microsampling devices appear to be well suited as containers for miRNAs,” the researchers wrote in Nucleic Acids Research.

Animal species that participated in the study include:

Additionally, human volunteers contributed blood specimens for a total of 19 species studied. The scientists reported success in capturing data from all of the species. They are integrating the information into their computer models and have developed a public database of their findings for future research.

“With our study, we provide a large collection of small RNA NGS expression data of species that have not been analyzed before in great detail. We created a comprehensive publicly available online resource for researchers in the field to facilitate the assessment of evolutionarily conserved small RNA sequences,” the researchers wrote in their paper.         

Clinical Laboratory Research and Zoos: A Future Partnership?

This novel involvement of zoo animals in research aimed at improving the ability of AI driven diagnostics to isolate and identify human disease is notable and worth watching. It is obviously pioneering work and needs much additional research. At the same time, these findings give evidence that there is useful information to be extracted from a wide range of unlikely sources—in this case, zoo animals.

Also, the use of artificial intelligence to search for useful patterns in the data is a notable part of what these researchers discovered. It is also notable that this research is focused on sequencing DNA and RNA of the animals involved with the goal of identifying sequences that are common across several species, thus demonstrating the common, important functions they serve.

In coming years, those clinical laboratories doing genetic testing in support of patient care may be incorporating some of this research group’s findings into their interpretation of certain gene sequences.

—Donna Marie Pocius

Related Information:

Blood Samples from the Zoo Help Predict Diseases in Humans

The sncRNA Zoo: A Repository for Circulating Small Noncoding RNAs in Animals

ASRA Public Database of Small Non-Coding RNAs

Innovations in Microsampling Blood Technology Mean More Patients Can Have Blood Tests at Home and Clinical Laboratories May Advance Toward Precision Medicine Goals

;