University of California Davis Researchers Discover Infant Microbiomes Lack B. Infantis in Developed Nations
Without the beneficial bacteria, infants can develop gut dysbiosis, which can lead to severe chronic diseases
Another key insight into how the human microbiome performs essential functions has been discovered by a research team at the University of California, Davis (UCD). They have learned that nearly all babies born in developed nations no longer have a specific strain of bacteria called B. infantis, which digests a certain type of sugar found in breast milk.
Microbiologists, clinical laboratory scientist, and pathologists will find the UCD researcher’s discovery to be a fascinating insight into a newly-understood function of the human microbiome. Assuming that further research confirms these early findings, it also could lead to a medical laboratory assay for use during pregnancy or after delivery that would enable physicians to determine if the newborn is missing this strain of bacteria and what therapies would be appropriate.
Babies in Developed Nations Lack Beneficial B. infantis Bacteria
“The central benefits of having a microbiota dominated by B. infantis is that it crowds all the other guys out—especially pathogenic bacteria, which can cause both acute illnesses and chronic inflammation that leads to disease,” UC Davis researcher Bruce German, PhD, Professor and Chemist, Food Science and Technology, told the New York Times.
The UC Davis researchers published their study findings in mSphere, a journal of the American Society for Microbiology. In their paper they note that Bifidobacterium Infantis or B. infantis, a beneficial bacteria that aids in digestion, is missing from the microbiomes of infants in developed nations, such as the United States.
The study hypothesized that the reduction and eventual absence of B. infantis in American babies was the consequence of three factors:
- An increase in cesarean births;
- Use of commercial formulas instead of breast milk; and,
- Heightened use of antibiotics.
According to the New York Times, “Dr. German and his colleagues learned about the missing bacterium by studying breast milk. They found that the milk contains an abundance of oligosaccharides, carbohydrates that babies are incapable of digesting. Why would they be there if babies can’t digest them? They realized that these carbohydrates weren’t feeding the baby—they were feeding B. infantis.”
Good versus Bad Gut Bacteria
Because 70-80% of our immune system resides within our gastrointestinal tract, gut bacteria play an important role in our overall health. Breast milk contains essential probiotics and anti-inflammatory compounds that help “friendly” bacteria flourish in the infant gut.
There are more than two hundred different sugars or carbohydrates found in breast milk, known as human milk oligosaccharides (HMOs). They are one of the most copious components in breast milk but are completely indigestible by humans. So, why are they there?
Because they serve a critical role as food for microbes or prebiotics. Scientists have discovered that HMOs present in breast milk are there to feed the B. infantis, not to nourish the baby.
HMOs also act as a decoy to confuse undesirable bacteria from doing damage in the gut.
“Bad” bacteria are inclined to latch onto sugar molecules in intestinal cells. Because HMOs are very similar to those sugar molecules, the undesirable bacteria will instead latch onto the HMOs in a baby’s gut and leave vulnerable intestinal cells alone.
The primary benefits of B. infantis include:
- Production of short-chain fatty acids. When infantis digests HMOs, some short-chain fatty acids are released, which provide energy and help control yeast and fungus growth.
- Support for gut integrity. infantis signals gut cells in infants to generate proteins that fill gaps between intestinal cells. These gaps can be dangerous as they may allow toxins and bad bacteria to get into the bloodstream.
- Keeping undesirable bacteria at bay. infantis consumes HMOs and usurps space in the gut so potentially dangerous bacteria cannot take up residence or cause problems.
- Release of sialic acid. As it devours HMOs, infantis churns and releases sialic acid, a crucial nutrient for the brain development of infants.
- Production of folate. infantis also produces folate, which is necessary for infant development and growth and the creation of red blood cells.
The UC Davis study is the latest example of new insights about the microbiome, which refers to the collected genetic material of human microbiota. This promising field of research is expected to lead to a better understanding of how human gut bacteria affects resistance to certain chronic diseases, such as cancer, and to new clinical laboratory treatments and drug therapies.
Different research initiatives involving the human microbiome continue to indicate that gut bacteria can be a source of useful biomarkers for improving the health of individuals. Dark Daily has covered the study of human microbiome and development of new cancer therapies based on that research for many years.
Microbiome research, however, sometimes uncovers negative findings as well.
Lack of B. infantis, a principle gut microbe, can contribute to gut dysbiosis, which has been linked to chronic health conditions such as:
- Allergies;
- Asthma;
- Obesity; and,
- Diabetes mellitus type 1.
Researchers observed that reduction in B. infantis in the infant gut also has resulted in a rise in the pH of infant fecal matter. An analysis of 14 clinical studies performed between 1926 and 2017 showed a startling increase of pH from 5.0 to 6.5 in infant stools.
“These alarming changes to the infant gut microbiome and thus, gut environment, may be due to modern medical practices like antibiotics, C-sections, and formula feeding,” Jennifer Smilowitz, PhD, Associate Director of Human Studies Research Program for the Foods for Health Institute at UC Davis, and one of the study authors, noted in a news release. “These are all potentially life-saving medical practices but have unintended consequences on the infant gut microbiome. As a result, certain pathogenic bacteria—those linked to higher risk of health issues, such as colic, eczema, allergies, diabetes, and obesity—thrive.”
The process by which the researchers in this study identified the missing bacteria illustrates how more refined ways to examine molecules in the body are providing streamlined tools to identify elements within the body and their interaction with each other.
This new insight is one more confirmation that the human microbiome will be the source of useful diagnostic biomarkers, associated with medical laboratory therapies that can improve the health of individual patients.
—JP Schlingman
Related Information:
Bifidobacterium Longum Subspecies Infantis: Champion Colonizer of the Infant Gut
How Baby’s First Microbes Could be Crucial to Future Health
Breast Milk and B. Infantis: Nature’s Favorite Probiotic
New Study Shows Significant Changes to Infant Fecal pH Over Last 100 Years