News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

World Economic Forum Publishes Updated List of 12 Breakthroughs in Fight against Cancer That Includes Innovative Clinical Laboratory Test (Part 1)

List also includes precision oncology, liquid biopsies, and early diagnosis of pancreatic cancer

Pathologists and clinical laboratory managers will be interested to learn that in a recently updated article the World Economic Forum (WEF) identified a dozen important recent breakthroughs in the ongoing fight to defeat cancer, including some related to pathology and clinical laboratory diagnostics.

The article noted that approximately 10 million people die each year from cancer. “Death rates from cancer were falling before the pandemic,” the authors wrote. “But COVID-19 caused a big backlog in diagnosis and treatment.”

The Swiss-based non-profit is best known for its annual meeting of corporate and government leaders in Davos, Switzerland. Healthcare is one of 10 WEF “centers” focusing on specific global issues.

Here are four advances identified by WEF that should be of particular interest to clinical laboratory leaders. The remaining advances will be covered in part two of this ebrief on Wednesday.

“Our study represents a major leap in cancer screening, combining the precision of protein-based biomarkers with the efficiency of sex-specific analysis,” said Novelna founder and CEO Ashkan Afshin, MD, ScD (above), in a company press release. “We’re not only looking at a more effective way of detecting cancer early but also at a cost-effective solution that can be implemented on a large scale.” The 12 breakthroughs listed in the World Economic Forum’s updated article will likely lead to new clinical laboratory screening tests for multiple types of cancer. (Photo copyright: Novelna.)

Novelna’s Early-Stage Cancer Test

Novelna, a biotech startup in Palo Alto, Calif., says it has developed a clinical laboratory blood test that can detect 18 early-stage cancers, including brain, breast, cervical, colorectal, lung, pancreatic, and uterine cancers, according to a press release.

In a small “proof of concept” study, scientists at the company reported that the test identified 93% of stage 1 cancers among men with 99% specificity and 90% sensitivity. Among women, the test identified 84% of stage 1 cancers with 85% sensitivity and 99% specificity.

The scientists published their study titled, “Novel Proteomics-based Plasma Test for Early Detection of Multiple Cancers in the General Population,” in the journal BMJ Oncology.

The researchers collected plasma samples from 440 individuals diagnosed with cancers and measured more than 3,000 proteins. They identified 10 proteins in men and 10 in women that correlated highly with early-stage cancers.

“By themselves, each individual protein was only moderately accurate at picking up early stage disease, but when combined with the other proteins in a panel they were highly accurate,” states a BMJ Oncology press release.

The company says the test can be manufactured for less than $100.

“While further validation in larger population cohorts is necessary, we anticipate that our test will pave the way for more efficient, accurate, and accessible cancer screening,” said Novelna founder and CEO Ashkan Afshin, MD, ScD, in the company press release.

Precision Oncology

According to the National Institutes of Health’s “Promise of Precision Medicine” web page, “Researchers are now identifying the molecular fingerprints of various cancers and using them to divide cancer’s once-broad categories into far more precise types and subtypes. They are also discovering that cancers that develop in totally different parts of the body can sometimes, on a molecular level, have a lot in common. From this new perspective emerges an exciting era in cancer research called precision oncology, in which doctors are choosing treatments based on the DNA signature of an individual patient’s tumor.”

This breakthrough is enabled by the emergence of next generation sequencing (NGS), wrote Genetron Health co-founder and CEO Sizhen Wang in a WEF blog post.

“These advanced sequencing technologies not only extend lifespans and improve cure rates for cancer patients through application to early screening; in the field of cancer diagnosis and monitoring they can also assist in the formulation of personalized clinical diagnostics and treatment plans, as well as allow doctors to accurately relocate the follow-up development of cancer patients after the primary treatment,” Wang wrote.

Based in China, Genetron Health describes itself as a “leading precision oncology platform company” with products and services related to cancer screening, diagnosis, and monitoring.

Liquid and Synthetic Biopsies

Liquid biopsies, in which blood or urine samples are analyzed for presence of biomarkers, provide an “easier and less invasive” alternative to conventional surgical biopsies for cancer diagnosis, the WEF article notes.

These tests allow clinicians to “pin down the disease subtype, identify the appropriate treatment and closely track patient response, adjusting course, if necessary, as each case requires—precision medicine in action,” wrote Merck Group CEO Belén Garijo, MD, in an earlier WEF commentary.

The WEF article also highlighted “synthetic biopsy” technology developed by Earli, Inc., a company based in Redwood City, Calif.

As explained in a Wired story, “Earli’s approach essentially forces the cancer to reveal itself. Bioengineered DNA is injected into the body. When it enters cancer cells, it forces them to produce a synthetic biomarker not normally found in humans.”

The biomarker can be detected in blood or breath tests, Wired noted. A radioactive tracer is used to determine the cancer’s location in the body.

The company hopes to begin clinical trials at the end of 2025, Genetic Engineering and Biotechnology News reported.

Early Diagnosis of Pancreatic Cancer

“Pancreatic cancer is one of the deadliest cancers,” the WEF article notes. “It is rarely diagnosed before it starts to spread and has a survival rate of less than 5% over five years.”

The WEF article authors highlighted an experimental blood test developed at the University of California San Diego School of Medicine.

The test is based on a technology known as high-conductance dielectrophoresis (DEP), according to a UC San Diego press release. “It detects extracellular vesicles (EVs), which contain tumor proteins that are released into circulation by cancer cells as part of a poorly understood intercellular communication network,” the press release states. “Artificial intelligence-enabled protein marker analysis is then used to predict the likelihood of malignancy.”

The UC San Diego researchers reported the results from their first clinical test of the technology in the journal Communications Medicine titled, “Early-Stage Multi-Cancer Detection Using an Extracellular Vesicle Protein-based Blood Test.”

The test detected 95.5% of stage 1 pancreatic cancers, 74.4% of stage 1 ovarian cancers, and 73.1% of pathologic stage 1A lethally aggressive serous ovarian adenocarcinomas, they wrote.

“These results are five times more accurate in detecting early-stage cancer than current liquid biopsy multi-cancer detection tests,” said co-senior author Scott M. Lippman, MD.

Look to Dark Daily’s ebrief on Wednesday for the remainder of breakthroughs the World Economic Forum identifies as top advancements in the fight to defeat cancer.

—Stephen Beale

Related Information:

Novelna Inc. Announces Groundbreaking Cancer Screening Test: A Major Step Toward Early Detection and Personalized Healthcare

Novel Proteomics-based Plasma Test for Early Detection of Multiple Cancers in the General Population

Precision Oncology: Who, How, What, When, and When Not?

Six Experts Reveal the Technologies Set to Revolutionize Cancer Care

Beyond Liquid Biopsies: How the Synthetic Biopsy Leads the Next Generation of Early Cancer Detection

A Proactive Way to Detect Cancer at Its Earliest Stages

Earli Detection: “Synthetic” Biomarkers Light Up Hidden Malignant Cancers

New Technique Detects 95% of Early-Stage Pancreatic Cancer

New Screening Tool IDs 95% of Stage 1 Pancreatic Cancer

Scientists Make DNA Discovery That Could Help Find Pancreatic Cancer Cure

Pancreatic Cancer Turns Off a Key Gene in Order to Grow

Early-Stage Multi-Cancer Detection Using an Extracellular Vesicle Protein-Based Blood Test

Promoter Methylation Leads to Hepatocyte Nuclear Factor 4A Loss and Pancreatic Cancer Aggressiveness

Researchers at University of Michigan Rogel Cancer Center Develop Urine Test That Detects Head and Neck Cancer

Proof-of-concept study may eventually lead to new clinical laboratory urine tests for fast, non-invasive detection of cancer

Here is the latest example of researchers finding useful biomarkers in urine for diagnosing certain cancers. The discovery comes from the University of Michigan Health Rogel Cancer Center, where, in a proof-of-concept study, scientists developed a urine-based test that screens for circulating free DNA (cfDNA) fragments (aka, cell-free DNA) released by tumors in the head and neck. If they confirm these findings, it’s possible the technology could be adapted into a non-invasive clinical laboratory test for selected cancers.

One such cancer is human papillomavirus (HPV) which, though “widely recognized for causing cervical cancer” is “increasingly found to cause cancers in the mouth, throat, and other head and neck regions,” according to a U-M Medical School press release.

The U-M study findings could lead to an early, non-invasive test for the detection of cancer, as compared to traditional urine or blood-based liquid biopsy testing.

The researchers published their findings in the journal JCI Insight titled, “ctDNA Transiting into Urine is Ultrashort and Facilitates Noninvasive Liquid Biopsy of HPV+ Oropharyngeal Cancer.”

“In this study, we provide evidence to support the hypothesis that conventional assays do not detect ultrashort fragments found in urine since they are designed to support longer DNA fragments. Our team used an unconventional approach to develop a urine test for HPV-positive head and neck cancer ctDNA detection,” said Chandan Bhambhani, PhD (above), Research Lab Specialist Intermediate at University of Michigan and co-first author of the study, in a news release. Clinical laboratories may soon have a new urine-based test for detecting cancer. (Photo copyright: LinkedIn.)

Advantages, Challenges of Urine Testing

Key to their discovery was use of whole genome sequencing to find what conventional assays tend to miss: predominantly ultrashort (under 50 base pairs) of circulating urine transrenal cell-free tumor DNA (TR-ctDNA) fragments, according to the JCI Insight paper.

According to the researchers, benefits of urine testing include:

  • Testing with urine is convenient for people who may be unable to access healthcare and phlebotomy services.
  • Urine has low biohazard risk and may be easily collected in large amounts, compared with blood.
  • Ongoing collection of urine could make way for TR-ctDNA “kinetics to be used as a high time-resolution biomarker” to monitor patients’ response to treatment.

However, urine, the researchers cautioned, must be analyzed in a different manner if it is to be comparable in efficiency to blood-based ctDNA testing.

“There have been mixed reports on the efficiency of TR-ctDNA detection compared with that of blood ctDNA. A potentially crucial factor for the analysis of TR-ctDNA is knowing the length of TR-ctDNA fragments present in urine, because this affects assay design for optimal sensitivity in TR-ctDNA detection,” the researchers explained.

New Assay Detects Ultrashort DNA Fragments

To complete their study, the U-M researchers developed an ultrashort HPV droplet digital PCR (polymerase chain reaction) assay that enabled detection of TR-ctDNA from HPV-associated oropharyngeal squamous cell carcinoma (HPV OPSCC), BioTechniques reported.

The assay was made to target the HPV16 E6 (Human papillomavirus 16) gene and to measure TR-ctDNA in patients with HPV OPSCC, the JCI Insight paper noted.

“The HPV16 E6 gene represents a highly recurrent ctDNA target in the population of patients with HPV OPSCC,” the researchers wrote in JCI Insight, adding:

  • Targeting ultrashort fragments was essential “for robust TR-ctDNA detection.”
  • Results in urine with patients with HPV OPSCC was consistent with results from plasma ctDNA.

The test, still in the discovery phase, was mailed to patients who were being treated for the disease and who reside within 100 miles of Ann Arbor, Mich. They returned urine samples for testing at the U-M lab and to get insights into possible post-treatment needs.

“Using longitudinal urine samples from a small case series, we showed proof of concept for early detection of cancer recurrence. Thus, our results indicate that by targeting ultrashort DNA fragments, TR-ctDNA becomes a viable approach for HPV OPSCC detection and potentially for cancer recurrence monitoring after treatment,” the authors wrote.

Further Studies, Possible Test Expansion

HPV infection—and especially HPV type 16—is a growing risk factor for oropharyngeal cancers, according to the National Cancer Institute.

The U-M Rogel Cancer Center scientists plan more studies to leverage the information urine may carry about an individual’s health. The researchers intend to expand the scope of their new test to other cancers including breast cancer and acute myeloid leukemia.

“The test that has been developed has detected cancer far earlier than would typically happen based on clinical imaging. As such, these promising results have given us the confidence to broaden the scope of this study, seeking to expanding distribution even further,” said J. Chad Brenner, PhD, Associate Professor of Otolaryngology-Head and Neck Surgery, U-M Medicine, and co-senior author of the study, in the news release.

The University of Michigan Health study exemplifies scientists’ commitment to new categories of biomarkers that can be used for medical laboratory tests and prescription drugs. And by focusing on urine, the researchers made it possible for patients to collect specimens themselves and send them to the medical laboratory for analysis and reporting.  

—Donna Marie Pocius

Related Information:

University of Michigan Health Lab Researchers Discover Urine-based Test to Detect Head and Neck Cancer

ctDNA Transiting into Urine is Ultrashort and Facilitates Noninvasive Liquid Biopsy of HPV+ Oropharyngeal Cancer

Urine-based Test Detects Head and Neck Cancer

National Cancer Institute: Head and Neck Fact Cancers

Johns Hopkins Research Team Uses Machine Learning on DNA “Dark Matter” in Blood to Identify Cancer

Findings could lead to new biomarkers clinical laboratories would use for identifying cancer in patients and monitoring treatments

As DNA “dark matter” (the DNA sequences between genes) continues to be studied, researchers are learning that so-called “junk DNA” (non-functional DNA) may influence multiple health conditions and diseases including cancer. This will be of interest to pathologists and clinical laboratories engaged in cancer diagnosis and may lead to new non-invasive liquid biopsy methods for identifying cancer in blood draws.

Researchers at Johns Hopkins Kimmel Cancer Center in Baltimore, Md., developed a technique to identify changes in repeat elements of genetic code in cancerous tissue as well as in cell-free DNA (cf-DNA) that are shed in blood, according to a Johns Hopkins news release.

The Hopkins researchers described their machine learning approach—called ARTEMIS (Analysis of RepeaT EleMents in dISease)—in the journal Science Translational Medicine titled, “Genomewide Repeat Landscapes in Cancer and Cell-Free DNA.”

ARTEMIS “shows potential to predict cases of early-stage lung cancer or liver cancer in humans by detecting repetitive genetic sequences,” Genetic Engineering and Biotechnology News (GEN) reported.

This technique could enable non-invasive monitoring of cancer treatment and cancer diagnosis, Technology Networks noted.

“Our study shows that ARTEMIS can reveal genomewide repeat landscapes that reflect dramatic underlying changes in human cancers,” said study co-leader Akshaya Annapragada (above), an MD/PhD student at the Johns Hopkins University School of Medicine, in a news release. “By illuminating the so-called ‘dark genome,’ the work offers unique insights into the cancer genome and provides a proof-of-concept for the utility of genomewide repeat landscapes as tissue and blood-based biomarkers for cancer detection, characterization, and monitoring.” Clinical laboratories may soon have new biomarkers for the detection of cancer. (Photo copyright: Johns Hopkins University.)

Detecting Early Lung, Liver Cancer

Artemis is a Greek word meaning “hunting goddess.” For the Johns Hopkins researchers, ARTEMIS also describes a technique “to analyze junk DNA found in tumors” and which float in the bloodstream, Financial Times explained.

“It’s like a grand unveiling of what’s behind the curtain,” said geneticist Victor Velculescu, MD, PhD, Professor of Oncology and co-director of the Cancer Genetics and Epigenetics Program at Johns Hopkins Kimmel Cancer Center, in the news release.

“Until ARTEMIS, this dark matter of the genome was essentially ignored, but now we’re seeing that these repeats are not occurring randomly,” he added. “They end up being clustered around genes that are altered in cancer in a variety of different ways, providing the first glimpse that these sequences may be key to tumor development.”

ARTEMIS could “lead to new therapies, new diagnostics, and new screening approaches for cancer,” Velculescu noted.

Repeats of DNA Sequences Tough to Study

For some time technical limitations have hindered analysis of repetitive genomic sequences by scientists. 

“Genetic changes in repetitive sequences are a hallmark of cancer and other diseases, but characterizing these has been challenging using standard sequencing approaches,” the study authors wrote in their Science Translational Medicine paper.

“We developed a de novo k-mer (short sequences of DNA)-finding approach called ARTEMIS to identify repeat elements from whole-genome sequencing,” the researchers wrote.

The scientists put ARTEMIS to the test in laboratory experiments.

The first analysis involved 1,280 types of repeating genetic elements “in both normal and tumor tissues from 525 cancer patients” who participated in the Pan-Cancer Analysis of Whole Genomes (PCAWG), according to Technology Networks, which noted these findings:

  • A median of 807 altered elements were found in each tumor.
  • About two-thirds (820) had not “previously been found altered in human cancer.”

Second, the researchers explored “genomewide repeat element changes that were predictive of cancer,” by using machine learning to give each sample an ARTEMIS score, according to the Johns Hopkins news release. 

The scoring detected “525 PCAWG participants’ tumors from the healthy tissues with a high performance” overall Area Under the Curve (AUC) score of 0.96 (perfect score being 1.0) “across all cancer types analyzed,” the Johns Hopkins’ release states.

Liquid Biopsy Deployed

The scientists then used liquid biopsies to determine ARTEMIS’ ability to noninvasively diagnose cancer. Researchers used blood samples from:

Results, according to Johns Hopkins:

  • ARTEMIS classified patients with lung cancer with an AUC of 0.82.
  • ARTEMIS detected people with liver cancer, as compared to others with cirrhosis or viral hepatitis, with a score of AUC 0.87.

Finally, the scientists used their “ARTEMIS blood test” to find the origin of tumors in patients with cancer. They reported their technique was 78% accurate in discovering tumor tissue sources among 12 tumor types.

“These analyses reveal widespread changes in repeat landscapes of human cancers and provide an approach for their detection and characterization that could benefit early detection and disease monitoring of patients with cancer,” the researchers wrote in Science Translational Medicine.

Large Clinical Trials Planned

Velculescu said more research is planned, including larger clinical trials.

“While still at an early stage, this research demonstrates how some cancers could be diagnosed earlier by detecting tumor-specific changes in cells collected from blood samples,” Hattie Brooks, PhD, Research Information Manager, Cancer Research UK (CRUK), told Financial Times.

Should ARTEMIS prove to be a viable, non-invasive blood test for cancer, it could provide pathologists and clinical laboratories with new biomarkers and the opportunity to work with oncologists to promptly diagnosis cancer and monitor patients’ response to treatment.

—Donna Marie Pocius

Related Information:

“Junk DNA” No More: Johns Hopkins Investigators Develop Method of Identifying Cancers from Repeat Elements of Genetic Code

Genomewide Repeat Landscapes in Cancer and Cell-Free DNA

AI Detects Cancer VIA DNA Repeats in Liquid Biopsies

Genetic “Dark Matter” Could Help Monitor Cancer

AI Explores “Dark Genome” to Shed Light on Cancer Growth

Australian Researchers Develop Static Droplet Microfluidic Device That Can Detect Cancer Cells via a Simple Blood Test

This is another approach to the liquid biopsy that clinical laboratories and pathologists may use to detect cancer less invasively

Screening for cancer usually involves invasive, often painful, costly biopsies to provide samples for diagnostic clinical laboratory testing. But now, scientists at the University of Technology (UTS) in Sydney, Australia, have developed a novel approach to identifying tumorous cells in the bloodstream that uses imaging to cause cells with elevated lactase to fluoresce, according to a UTS news release.

The UTS researchers created a Static Droplet Microfluidic (SDM) device that detects circulating tumor cells (CTC) that have separated from the cancer source and entered the bloodstream. The isolation of CTCs is an intrinsic principle behind liquid biopsies, and microfluidic gadgets can improve the efficiency in which problematic cells are captured.

The University of Technology’s new SDM device could lead the way for very early detection of cancers and help medical professionals monitor and treat cancers.

The UTS researchers published their findings in the journal Biosensors and Bioelectronics titled, “Rapid Metabolomic Screening of Cancer Cells via High-Throughput Static Droplet Microfluidics.”

“Managing cancer through the assessment of tumor cells in blood samples is far less invasive than taking tissue biopsies. It allows doctors to do repeat tests and monitor a patient’s response to treatment,” explained Majid E. Warkiani, PhD, Professor, School of Biomedical Engineering, UTS, and one of the authors of the study, in a news release. Clinical laboratories and pathologists may soon have a new liquid biopsy approach to detecting cancers. (Photo copyright: University of New South Wales.)

Precision Medicine a Goal of UTS Research

The University of Technology’s new SDM device differentiates tumor cells from normal cells using a unique metabolic signature of cancer that involves the waste product lactate

“A single tumor cell can exist among billions of blood cells in just one milliliter of blood, making it very difficult to find,” explained Majid E. Warkiani, PhD, a professor in the School of Biomedical Engineering at UTS and one of the authors of the study, in the news release.

“The new [SDM] detection technology has 38,400 chambers capable of isolating and classifying the number of metabolically active tumor cells,” he added.

“In the 1920s, Otto Warburg discovered that cancer cells consume a lot of glucose and so produce more lactate. Our device monitors single cells for increased lactate using pH sensitive fluorescent dyes that detect acidification around cells,” Warkiani noted.

After the SDM device has detected the presence of questionable cells, those cells undergo further genetic testing and molecular analysis to determine the source of the cancer. Because circulating tumor cells are a precursor of metastasis, the device’s ability to identify CTCs in very small quantities can aid in the diagnosis and classification of the cancer and the establishment of personalized treatment plans, a key goal of precision medicine.

The new technology was also designed to be operated easily by medical personnel without the need for high-end equipment and tedious, lengthy training sessions. This feature should allow for easier integration into medical research, clinical laboratory diagnostics, and enable physicians to monitor cancer patients in a functional and inexpensive manner, according to the published study. 

“Managing cancer through the assessment of tumor cells in blood samples is far less invasive than taking tissue biopsies. It allows doctors to do repeat tests and monitor a patient’s response to treatment,” stated Warkiani in the press release.

The team have filed for a provisional patent for the device and plan on releasing it commercially in the future.

Other Breakthroughs in MCED Testing

Scientists around the world have been working to develop a simple blood test for diagnosing cancer and creating optimal treatment protocols for a long time. There have been some notable breakthroughs in the advancement of multi-cancer early detection (MCED) tests, which Dark Daily has covered in prior ebriefings.

In “NHS Trial Analysis Finds That Grail’s Galleri Clinical Laboratory Blood Test Can Detect 50 Cancers and Identify the Location of the Cancer,” we reported how the UK’s National Health Service (NHS) had conducted a trial study of an MCED test developed by a California-based healthcare technology company that could provide a less painful/invasive cancer test experience to UK residents.

And in “University Researchers Develop Microfluidic Device That Partitions Cancer Cells According to Size in Effort to Create a Useful Liquid Biopsy Method,” we covered how researchers at the University of Illinois at Chicago (UIC) and Queensland University of Technology (QUT) in Australia had unveiled a diagnostic device that uses microfluidic technology to identify cell types in blood by their size and isolate individual cancer cells from patient blood samples.

According to the Centers for Disease Control and Prevention (CDC), cancer ranks second in the leading causes of death in the US, just behind heart disease. There were 1,603,844 new cancer cases reported in 2020, and 602,347 people died of various cancers that year in the US. 

According to the National Cancer Institute, the most common cancers diagnosed in the US annually include:

Cancer is a force in Australia as well. It’s estimated that 151,000 Australians were diagnosed with cancer in 2021, and that nearly one in two Australians will receive a diagnosis of the illness by the age of 85, according to Cancer Council South Australia.

The population of Australia in 2021 was 25.69 million, compared to the US in the same year at 331.9 million.

The development of the University of Technology’s static droplet microfluidic device is another approach in the use of liquid biopsies as a means to detect cancer less invasively.

More research and clinical studies are needed before the device can be ready for clinical use by anatomic pathology groups and medical laboratories, but its creation may lead to faster diagnosis of cancers, especially in the early stages, which could lead to improved patient outcomes. 

—JP Schlingman

Related Information:

New Technology to Improve Cancer Detection and Treatment

This Device Can Easily, Cheaply Detect Cancer Cells in a Blood Sample

Rapid Metabolomic Screening of Cancer Cells via High-throughput Static Droplet Microfluidics

Multi-cancer Early Detection (MCED) Tests

Static Droplet Microfluidic, the Cancer Cell Analysis Device

NHS Trial Analysis Finds That Grail’s Galleri Clinical Laboratory Blood Test Can Detect 50 Cancers and Identify the Location of the Cancer

University Researchers Develop Microfluidic Device That Partitions Cancer Cells According to Size in Effort to Create a Useful Liquid Biopsy Method

US and UK Researchers Simultaneously Develop New Tests to Detect Prostate Cancer

Though still in trials, early results show tests may be more accurate than traditional clinical laboratory tests for detecting prostate cancer

Within weeks of each other, different research teams in the US and UK published findings of their respective efforts to develop a better, more accurate clinical laboratory prostate cancer test. With cancer being a leading cause of death among men—second only to heart disease according to the Centers for Disease Control and Prevention (CDC)—new diagnostics to identify prostate cancer would be a boon to precision medicine treatments for the deadly disease and could save many lives.

Researchers at the University of East Anglia (UEA) in Norwich, England, were working to improve the accuracy of the widely-used and accepted prostate-specific antigen (PSA) test. By contrast, researchers at Cedars-Sinai Cancer in Los Angeles, pursued a new liquid biopsy approach to identifying prostate cancer that uses nanotechnology.

Thus, these are two different pathways toward the goal of achieving earlier, more accurate diagnosis of prostate cancer, the holy grail of prostate cancer diagnosis.

Dmitry Pshezhetskiy, PhD

“There is currently no single test for prostate cancer, but PSA blood tests are among the most used, alongside physical examinations, MRI scans, and biopsies,” said Dmitry Pshezhetskiy, PhD (above), Professorial Research Fellow at University of East Anglia and one of the authors of the UEA study. “However, PSA blood tests are not routinely used to screen for prostate cancer, as results can be unreliable. Only about a quarter of people who have a prostate biopsy due to an elevated PSA level are found to have prostate cancer. There has therefore been a drive to create a new blood test with greater accuracy.” With the completion of the US and UK studies, clinical laboratories may soon have a new diagnostic test for prostate cancer. (Photo copyright: University of East Anglia.)

East Anglia’s Research into a More Accurate Blood Test

Scientists at the University of East Anglia (UEA) worked with researchers from Imperial College in London, Imperial College NHS Trust, and Oxford BioDynamics to develop a new precision medicine blood test that can detect prostate cancer with greater accuracy than current methods.

The epigenetic blood test they developed, called Prostate Screening EpiSwitch (PSE), can identify cancer-specific chromosome conformations in blood samples. The test works in tandem with the standard prostate-specific antigen (PSA) blood test to diagnose prostate cancer, according to an Oxford BioDynamics press release.

The researchers evaluated their test in a pilot study involving 147 patients. They found their testing method had a 94% accuracy rate, which is higher than that of PSA testing alone. They discovered their test significantly improved the overall detection of prostate cancer in men who are at risk for the disease. 

“When tested in the context of screening a population at risk, the PSE test yields a rapid and minimally invasive prostate cancer diagnosis with impressive performance,” Dmitry Pshezhetskiy, PhD, Professorial Research Fellow at UEA and one of the authors of the study told Science Daily. “This suggests a real benefit for both diagnostic and screening purposes.”

The UK scientists hope their test can eventually be used in everyday clinical practice as there is a need for a highly accurate method for prostate cancer screening that does not subject patients to unnecessary, costly, invasive procedures. 

The UEA researchers published their findings in the peer-reviewed journal Cancers, titled, “Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection.”

Cedars-Sinai’s Research into Nanotechnology Cancer Testing

Researchers from Cedars-Sinai Cancer took a different approach to diagnosing prostate cancer by developing a nanotechnology-based liquid biopsy test that detects the disease even in microscopic amounts.  

Their test isolates and identifies extracellular vesicles (EVs) from blood samples. EVs are microscopic non-reproducing protein and genetic material shed by all cells. Cedars-Sinai’s EV Digital Scoring Assay accurately extracts EVs from blood and analyzes them faster than similar currently available tests.

“This research will revolutionize the liquid biopsy in prostate cancer,” said oncologist Edwin Posadas, MD, Medical Director of the Urologic Oncology Program and co-director of the Experimental Therapeutics Program in Cedars-Sinai Cancer in a press release. “The test is fast, minimally invasive and cost-effective, and opens up a new suite of tools that will help us optimize treatment and quality of life for prostate cancer patients.”

The researchers tested blood samples from 40 patients with prostate cancer. They found that their EV test could distinguish between cancer localized to the prostate and cancer that has spread to other parts of the body.

Microscopic cancer deposits, called micrometastases, are not always detectable, even with advanced imaging methods. When these deposits spread outside the prostate area, focused radiation cannot prevent further progression of the disease. Thus, the ability to identify cancer by locale within the body could lead to new precision medicine treatments for the illness.

“[The EV Digital Scoring Assay] would allow many patients to avoid the potential harms of radiation that isn’t targeting their disease, and instead receive systemic therapy that could slow disease progression,” Posadas explained.

The Cedars-Sinai researchers published their findings in Nano Today, titled, “Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs.”

Other Clinical Laboratory Tests for Prostate Cancer Under Development

According to the American Cancer Society, the number of prostate cancer cases is increasing. One out of eight men will be diagnosed with the illness during his lifetime. Thus, developers have been working on clinical laboratory tests to accurately detect the disease and save lives for some time.

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily reported on a urine test also developed by scientists at the University of East Anglia that clinical laboratories can use to not only accurately diagnose prostate cancer but also determine whether it is an aggressive form of the disease.

And in “UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer ,” we outlined how researchers at the University of Pittsburgh Medical Center (UPMC) working with Ibex Medical Analytics in Israel had developed an artificial intelligence (AI) algorithm for digital pathology that can accurately diagnose prostate cancer. In the initial study, the algorithm—dubbed the Galen Prostate AI platform—accurately detected prostate cancer with 98% sensitivity and 97% specificity.

More research and clinical trials are needed before the new US and UK prostate cancer testing methods will be ready to be used in clinical settings. But it’s clear that ongoing research may soon produce new clinical laboratory tests and diagnostics for prostate cancer that will steer treatment options and allow for better patient outcomes.  

—JP Schlingman

Related Information:

The New Prostate Cancer Blood Test with 94 Percent Accuracy

Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection

Invention: A Blood Test to Unlock Prostate Cancer Mysteries

Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs

Could a Urine Test Detect Pancreatic and Prostate Cancer? Study Shows 99% Success Rate

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer

;