Researchers in Boston Find COVID-19 Spike Protein Lingers in Long COVID-19 Patients
Viral reservoir could be behind persistence, says study, which also suggests a blood biomarker could be found for clinical laboratory testing
Microbiologists and virologists working closely with physicians treating long COVID-19 patients will gain new insights in a study that found coronavirus spike protein in COVID-19 patients’ blood up to 12 months after diagnosis. The researchers believe their findings could be used to develop a clinical laboratory biomarker for long COVID-19.
Researchers at Brigham and Women’s Hospital and Massachusetts General Hospital said medical experts are not sure why some people have unwelcome symptoms weeks and months after a positive COVID-19 diagnosis, while others clear the infection without lingering effects.
The scientists believe if this work is validated, clinical laboratories might gain an assay to use in the diagnosis of long COVID-19.
“The diagnosis and management of post-acute sequelae of COVID-19 (PASC) poses an ongoing medical challenge. … Strikingly, we detect SARS-CoV-2 spike antigen in a majority of PASC patients up to 12 months post-diagnosis, suggesting the presence of an active persistent SARS-CoV-2 viral reservoir,” the researchers wrote in their published study, which can be found on the preprint server medRxiv, titled, “Persistent Circulating SARS-CoV-2 Spike Is Associated with Post-Acute COVID-19 Sequelae.”
“The half-life of spike protein in the body is pretty short, so its presence indicates that there must be some kind of active viral reservoir,” said David Walt, PhD (above), Professor of Pathology, Brigham and Women’s Hospital, and lead author of the study that found coronavirus spike protein in long COVID patients. The study findings indicate a potential clinical laboratory biomarker for long COVID-19. (Photo copyright: Brigham and Women’s Hospital.)
Viral Reservoir Possibly Behind Long COVID-19
The study suggests that SARS-CoV-2 finds a home in the body, particularly the gastrointestinal tract, “through viral reservoirs, where it continues to release spike protein and trigger inflammation,” Medical News Today reported.
Lead author of the study David Walt, PhD, Professor of Pathology, Brigham and Women’s Hospital and the Hansjörg Wyss Professor Biologically Inspired Engineering at Harvard Medical School, told The Guardian he “was motivated to carry out the study after earlier research by his colleagues detected genetic material from the COVID virus (viral RNA) in stool samples from children with multisystem inflammatory syndrome (a rare but serious condition that often strikes around four weeks after catching COVID) as well as spike protein and a marker of gut leakiness in their blood.”
Long COVID—also known as long-haul COVID, post-COVID-19, or its technical name, post-acute sequelae of COVID-19 or PASC—can involve health problems continuing weeks, months, or even years after a positive diagnosis, according to the federal Centers for Disease Control and Prevention (CDC).
Symptoms of long COVID, according to the researchers, include:
- fatigue,
- loss of smell,
- memory loss,
- gastrointestinal distress, and
- shortness of breath.
“If someone could somehow get to that viral load and eliminate it, it might lead to resolution of symptoms,” Walt told the Boston Globe, which noted that the researchers may explore a clinical trial involving antiviral drugs for treatment of long COVID-19.
Clues from Earlier Studies on Long COVID-19
Medical conditions that persisted following a COVID-19 infection have been studied for some time. In fact, in an earlier study, Walt and others found children who developed a multisystem inflammation syndrome weeks after being infected by SARS-CoV-2, according to their 2021 paper published in The Journal of Clinical Investigation, titled, “Multisystem Inflammatory Syndrome in Children Is Driven by Zonulin-Dependent Loss of Gut Mucosal Barrier.”
Although these earlier studies provided clues, the cause of PASC remains unclear, the researchers noted. They planned to take a more precise look at PASC biology by using appropriate sampling and patient recruitment.
“Disentangling the complex biology of PASC will rely on the identification of biomarkers that enable classification of patient phenotypes. Here, we analyze plasma samples collected from PASC and COVID-19 patients to determine the levels of SARS-CoV-2 antigens and cytokines and identify a blood biomarker that appears in the majority of PASC patients,” the researchers wrote.
Finding a Marker of a Persistent Infection
The researchers used plasma samples from 63 people with a previous SARS-CoV-2 diagnosis (37 also had PASC), Medical News Today reported. Over a 12-month period, the researchers’ findings included:
- Detection in 65% of PASC samples of full-length spike, S1 spike, and nucleocapsid throughout the year of testing.
- Spike detected in 60% of PASC patient samples, and not found in the COVID-19 samples.
In an interview with Scientific American, bioengineer Zoe Swank PhD, post-doctoral researcher, Brigham and Women’s Hospital, and co-author of the study, said, “Our main hypothesis is that the spike protein is not causing the symptoms, but it’s just a marker that is released because you still have infection of some cells with SARS-CoV-2.”
In that article, Swank shared the scientists’ intent to do more research involving hundreds of samples over the course of the COVID-19 pandemic from many hospitals and people.
COVID-19 Not the Only Virus That Hangs On
Having a long-haul COVID-19 marker is a “game-changer,” according to an infectious disease expert who was not involved in the study.
“There has not so far been a clear, objective marker that is measurable in the blood of people experiencing long COVID-19,” Michael Peluso, MD, Assistant Professor, Medicine, University of California San Francisco, told Scientific American. “I hope their findings will hold up. It really would make a difference for a lot of people if a marker like this could be validated,” he added.
However, COVID-19 is not the only virus that could persist. Ebola also may linger in areas that skirt the immune system, such as the eye interior and central nervous system, according to a World Health Organization fact sheet.
Thus, medical laboratory leaders may want to follow the Brigham and Women’s Hospital research to see if the scientists validate their finding, discover a biomarker for long-haul COVID-19, and pursue a clinical trial for antiviral drugs. Such discoveries could have implications for how diagnostic professionals work with physicians to care for long COVID patients.
—Donna Marie Pocius
Related Information:
Persistent Circulating SARS-CoV-2 Spike Is Associated with Post-Acute COVID-19 Sequelae
Long COVID: “Viral Reservoir” of Spike Protein May Explain Long-Term Symptoms
Are Pockets of COVID in the Gut Causing Long-Term Symptoms?
CDC: COVID-19: Long-Term Effects
Boston Researchers May Have Found Biomarker for Long COVID
People with Long COVID May Still Have Spike Proteins in Their Blood