News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Lancet Study Finds Urgent Need for Improvement in Clinical Laboratory Prostate Cancer Screening Worldwide

Ongoing increases in the global number of prostate cancer cases expected to motivate test developers to deliver better screening tests to pathologists and clinical lab scientists

No less an authority than the peer-reviewed healthcare journal The Lancet is drawing attention to predictions of increasing prostate cancer cases across the globe, triggering calls for the development of cheaper, faster, and more accurate assays that pathologists and medical laboratories can use to screen for—and diagnose—prostate cancer.

Swift population growth and rising life expectancy will cause the prostate cancer death rate to nearly double in the next 20 years, according to a new study that has led scientists to call for immediate, critical improvements in clinical laboratory testing for cancer screening, Financial Times (FT) reported.

The International Agency for Research on Cancer (IARC) partnered with The Lancet Commission for the study. They found the strongest need is with underserved populations.

“Low- and middle-income countries need to prepare to prevent a sharp rise in fatalities while richer nations should pay more attention to young men at higher risk of the disease,” FT noted. The study, titled, “The Lancet Commission on Prostate Cancer: Planning for the Surge in Cases,” predicts cases will jump from 1.4 million in 2020 to 2.9 million by 2040.

“Prostate cancer is the most common cancer in men in 112 countries, and accounts for 15% of cancers. In this Commission, we report projections of prostate cancer cases in 2040 on the basis of data for demographic changes worldwide and rising life expectancy. … This surge in cases cannot be prevented by lifestyle changes or public health interventions alone, and governments need to prepare strategies to deal with it,” the study authors wrote.

“The findings in this Commission provide a pathway forward for healthcare providers and funders, public health bodies, research funders, governments, and the broader patient and clinical community,” the authors noted. In their Lancet paper, the researchers define clear areas for improvement.

Given the shortage worldwide of pathologists—especially highly-trained pathologists—the gap between the demand/need for expanded prostate cancer testing as screens (along with prostate biopsies) and the available supply of pathologists will encourage companies to develop screening and diagnostic tests that are accurate and automated, thus increasing the productivity of the available pathologists.

“As more and more men around the world live to middle and old age, there will be an inevitable rise in the number of prostate cancer cases. We know this surge in cases is coming, so we need to start planning and take action now,” said Nick James, PhD (above), Professor of Prostate and Bladder Cancer Research at The Institute of Cancer Research, in a press release. Pathologists and medical laboratories worldwide will want to monitor progress of The Lancet Commission’s recommendations. (Photo copyright: Institute of Cancer Research.)

Focus on Outreach, AI, Research/Development

“The only thing you can do to mitigate the damage … is to set up programs that diagnose it earlier to allow earlier treatment,” Nick James, PhD, The Lancet Commission study’s lead author, told the Financial Times. James is Professor of Prostate and Bladder Cancer Research at The Institute of Cancer Research (IRC) and The Royal Marsden NHS Foundation Trust, London.

“Evidence-based interventions, such as improved early detection and education programs, will help to save lives and prevent ill health from prostate cancer in the years to come. This is especially true for low- and middle-income countries (LMICs) which will bear the overwhelming brunt of future cases,” he said in a press release.

Communication is key. “Improved outreach programs are needed to better inform people of the key signs to look out for and what to do next,” James N’Dow, MD, Professor and Chair in Surgery and Director of the Academic Urology Unit at the University of Aberdeen in the UK, told the Financial Times. “Implementing these in tandem with investments in cost-effective early diagnostic systems will be key to preventing deaths,” he added.

Capitalizing on artificial intelligence (AI) analysis to help translate results was another area The Lancet Commission researchers focused on, Financial Times noted.

AI could “subdivide disease into potentially valuable additional subgroups to help with treatment selection. In environments with few or no pathologists, these changes could be transformational,” the study authors wrote.

High Income Countries (HICs) would benefit from AI by empowering patients. “Linking cloud-based records to artificial intelligence systems could allow access to context-sensitive, up-to-date advice for both patients and health professionals, and could be used to drive evidence-based change in all settings,” the study authors added. Such a trend could lead to specialist prostate cancer pathologists being referred cases from around the world as digital pathology systems become faster and less expensive.

Effective treatment strategies and bolstering areas of need is also key, the study notes. “Many LMICs have urgent need for expansion of radiotherapy and surgery services,” the study authors wrote. The researchers stress the need to immediately implement expansion programs to keep up with anticipated near-future demand.

Cancer drug therapy should follow suit.

“Research and the development of risk-stratified regulatory models need to be facilitated,” the study authors noted, citing a focus on drug repurposing and dose de-escalation. “Novel clinical trial designs, such as multi-arm platforms, should be supported and expanded,” they added.

Unique Needs of LMICs, HICs

The Lancet Commission researchers’ recommendations shift depending on the financial health of a specific area. HICs are experiencing a 30-year decline in the number of deaths resulting from prostate cancer, presumably from additional testing measures and public health campaigns that may be lacking in LMICs, Financial Times reported. And as population growth soars, low-to-middle income populations “will need to be prepared for the strain the expected surge in cases will put on health resources.”

For HICs, the study dissected the limitations of prostate-specific antigen (PSA) testing. The researchers pointed out that PSA’s inaccuracies in screening symptomless patients can pinpoint “cancers that may never cause symptoms and need no treatment,” Financial Times reported.

Missing high-risk cases was also a cause for concern. “Diagnostic pathways should be modified to facilitate early detection of prostate cancer while avoiding overdiagnosis and overtreatment of trivial disease,” the study notes.

Screenings for high-risk younger men, and continuing public campaigns about prostate cancer, should be a focus for HICs, the study authors noted. “These would include people who have a family history of the disease, are of African ancestry, or carry a genetic mutation known as BRCA2,” Financial Times reported.

While the undertaking may sound intimidating—there is already such a heavy impact worldwide from prostate cancer—the researchers are optimistic of their recommendations.

“Options to improve care are already available at moderate cost. We found that late diagnosis is widespread worldwide, but especially in LMICs, where it is the norm. Early diagnosis improves prognosis and outcomes, and reduces societal and individual costs, and we recommend changes to the diagnostic pathway that can be immediately implemented,” the study authors wrote.

What Comes Next

“More research is needed among various ethnic groups to expand understanding of prostate cancer beyond the findings from studies that were largely based on data from white men,” The Lancet Commission told the Financial Times.

Astute pathologists and medical laboratories will want to monitor efforts to develop assays that are inexpensive, more accurate, and produce faster answers. Demand for these tests will be substantial—both in developed and developing nations.

—Kristin Althea O’Connor

Related Information:

Prostate Cancer Rise Sparks Call for Overhaul of Testing

The Lancet Commission on Prostate Cancer: Planning for the Surge in Cases

Lancet Commission Predicts Sharp Increase in Global Prostate Cancer Cases

The Lancet: Prostate Cancer Cases Expected to Double Worldwide Between 2020 and 2040, New Analysis Suggests

Prostate Cancer Cases Might Rise to 3 Million Globally by 2040

Global Consortium of Scientists Develop New Whole Genome Sequencing Method That Brings Costs Down to $10 per Genome

At that reduced cost, clinical laboratories in developing countries with no access to WGS could have it as a critical tool in their fight against the spread of deadly bacteria and viruses

New research into a low-cost way to sequence bacterial genomes—for as little as $10—is predicted to give public health authorities in low- and middle-income countries (LMICs) a new tool with which to more quickly identify and control disease outbreaks.

This new approach offers an alternative to more expensive Whole genome sequencing (WGS) methodologies, which clinical laboratories in developed countries typically use to identify and track outbreaks of infectious diseases. And with SARS-CoV-2 variants resulting in increased COVID-19 infections, the ability to perform low-cost, rapid, and accurate WGS is becoming increasingly important.

But for many developing countries that need it the most, the cost of WGS has kept this critical technology out of reach.

Now, a global consortium of scientists has successfully established an efficient and inexpensive pipeline for the worldwide collection and sequencing of bacterial genomes. The large-scale sequencing method could potentially provide researchers in LIMCs with tools to sequence large numbers of bacterial and viral pathogens. This discovery also could strengthen research collaborations and help tackle future pandemics.

The team of scientists, led by researchers at the Earlham Institute and the University of Liverpool, both located in the UK, are confident their technology can be made accessible to clinical laboratories in LMICs around the globe.

The researchers published their findings in the journal Gen Biology, titled, “An Accessible, Efficient and Global Approach for the Large-Scale Sequencing of Bacterial Genomes.”

Neil Hall, PhD
“It has been 26 years since the first bacterial genome was sequenced, and it is now possible to sequence bacterial isolates at scale,” Neil Hall, PhD (above), director of the Earlham Institute and one of the authors of the study, told Genetic Engineering and Biotechnology News. “However, access to this game-changing technology for scientists in low- and middle-income countries has remained restricted. The need to ‘democratize’ the field of pathogen genomic analysis prompted us to develop a new strategy to sequence thousands of bacterial isolates with collaborators based in many economically challenged countries.” (Photo copyright: Earlham Institute.)

Streamlining Collection and Sequencing

The international team of scientists aimed their innovative WGS approach at streamlining the collection and sequencing of bacterial isolates (variants). The researchers collected more than 10,400 clinical and environmental bacterial isolates from several LMICs in less than a year. They optimized their sample logistics pipeline by transporting the bacterial isolates as thermolysates from other countries to the UK. Those isolates were sequenced using a low cost, low input automated method for rapid WGS. They then performed the gene library construction and DNA sequencing analysis for a total reagent cost of less than $10 per genome.

The scientists focused their research on Salmonella enterica, a pathogen that causes infections and deadly diseases in human populations. Non-typhoidal Salmonella (NTS) have been associated with enterocolitis, a zoonotic disease in humans linked to industrial food production.

Because the disease is common in humans, there have been more genome sequences generated for Salmonella than any other type of germ.

“In recent years, new lineages of NTS serovars Typhimurium and Enteritidis have been recognized as common causes of invasive bloodstream infections (iNTS disease), responsible for about 77,000 deaths per year worldwide,” the researchers wrote in their Gen Biology paper. “Approximately 80% of deaths due to iNTS disease occurs in sub-Saharan Africa, where iNTS disease has become endemic.”

Increasing Access to Genomics Technologies in Developing Countries

The research consortium 10,000 Salmonella Genomes Project (10KSG) led the large-scale WGS initiative. The alliance involves contributors from 25 institutions in 16 countries and was designed to generate information relevant to the epidemiology, drug resistance, and virulence factors of Salmonella using WGS techniques.

“One of the most significant challenges facing public health researchers in LMICs is access to state-of-the-art technology, Jay Hinton, PhD, Professor of Microbial Pathogenesis at the University of Liverpool and one of the paper’s authors, told Technology Networks. “For a combination of logistical and economic reasons, the regions associated with the greatest burden of severe bacterial disease have not benefited from widespread availability of WGS. The 10,000 Salmonella genomes project was designed to begin to address this inequality.”

The authors noted in their study that the costs associated with sequencing have remained high mostly due to sample transportation and library construction and the fact that there are only a few centers in the world that have the ability to handle large-scale bacterial genome projects.

“Limited funding resources led us to design a genomic approach that ensured accurate sample tracking and captured comprehensive metadata for individual bacterial isolates, while keeping costs to a minimum for the Consortium,” Hall told Genetic Engineering and Biotechnology News(GEN). “The pipeline streamlined the large-scale collection and sequencing of samples from LMICs.”

“The number of publicly available sequenced Salmonella genomes reached 350,000 in 2021 and are available from several online repositories,” he added. “However, limited genome-based surveillance of Salmonella infections has been done in LMICs, and the existing dataset did not accurately represent the Salmonella pathogens that are currently causing disease across the world.”

The $10 cost is designed to help healthcare systems in developing countries identify the specific genetic composition of infectious diseases. That’s the necessary first step for developing a diagnostic test that enables physicians to make an accurate diagnosis and initiate appropriate therapy.

“The adoption of large-scale genome sequencing and analysis of bacterial pathogens will be an enormous asset to public health and surveillance in LMI countries,” molecular microbiologist Blanca Perez Sepulveda, PhD, told GEN. Sepulveda is a postdoctoral Researcher at the University of Liverpool and one of the authors of the study.

Improvement in next-generation sequencing technology has reduced costs, shortened turnaround time (TAT), and improved accuracy of whole genome sequencing. Once this low-cost method for collecting and transporting bacterial sequences becomes widely available, clinical laboratories in developing countries may be able to adopt it for genome analysis of different strains and variants of bacteria and viruses.

JP Schlingman

Related Information:

Scientists Develop $10 Per Genome Approach for Large-scale Bacterial Sequencing

An Accessible, Efficient and Global Approach for the Large-scale Sequencing of Bacterial Genomes

Affordable Genome Sequencing to Help Tackle Global Epidemics

;