Amazon’s app-based employee healthcare service could be first step toward retailer becoming a disruptive force in healthcare; federal VA develops its own mHealth apps
More consumers are using smartphone applications (apps) to manage different aspects of their healthcare. That fact should put clinical laboratories and anatomic pathology groups on the alert, because a passive “wait and see” strategy for making relevant services and lab test information available via mobile apps could cause patients to choose other labs that do offer such services.
Patient use of apps to manage healthcare is an important trend. In January, Dark Daily covered online retail giant Amazon’s move to position itself as a leader in smartphone app-based healthcare with its launch of Amazon Care, a virtual medical clinic and homecare services program. At that time, the program was being piloted for Seattle-based employees and their families only. Since then, it has been expanded to include eligible Amazon employees throughout Washington State.
Mobile health (mHealth) apps are giving healthcare providers rapid access to patient information. And healthcare consumers are increasingly turning to their mobile devices for 24/7 access to medical records, clinical laboratory test results, management of chronic conditions, and quick appointment scheduling and prescription refills.
Thus, hearing ‘There’s an app for that’ has become part of patients’ expectations for access to quality, affordable healthcare.
For clinical laboratory managers, this steady shift toward mHealth-based care means accommodating patients who want to use mobile apps to access lab test results and on-demand lab data to monitor their health or gain advice from providers about symptoms and health issues.
Amazon, VA, and EMS Develop Their Own mHealth Apps
The Amazon Care app can be freely downloaded from Apple’s App Store and Google Play. With it, eligible employees and family members can:
Communicate with an advice nurse;
Launch an in-app video visit with a doctor or nurse practitioner for advice, diagnoses, treatment, or referrals;
Request a mobile care nurse for in-home or in-office visits;
Receive prescriptions through courier delivery.
The combination telehealth, in-person care program, mobile medical service includes dispatching nurses to homes or workplaces who can provide “physical assessments, vaccines or common [clinical laboratory] tests.”
However, the US federal Department of Veterans Affairs (VA) also is becoming a major player in the mHealth space with the development of its own mobile app—VA Launchpad—which serves as a portal to a range of medical services.
Veterans can access five categories of apps that allow them to manage their health, communicate with their healthcare team, share health information, and use mental health and personal improvement tools.
mHealthIntelligence reported that mobile health tools also are enabling first responders to improve emergency patient care. At King’s Daughters Medical Center in Brookhaven, Miss., emergency medical technicians (EMTs) are using a group of mHealth apps from DrFirst called Backline to gain real-time access to patients’ HIPAA-compliant medication histories, share clinical data, and gain critical information about patients prior to arriving on the scene.
Using Backline, EMTs can scan the barcode on a patient’s driver’s license to access six months’ worth of medication history.
“In the past, we could only get information from [patients] who are awake or are willing to give us that information,” Lee Robbins, Director of Emergency Medical Services at King’s Daughters Medical Center in Brookhaven, Miss., told mHealthIntelligence. “Knowing this information gives us a much better chance at a good outcome.”
Smartphone App Detects Opioid Overdose
The opioid crisis remains one of the US’ greatest health challenges. The federal Centers for Disease Control and Prevention (CDC) reported 47,600 opioid-related deaths in 2017, and the problem has only gotten worse since then.
To curtail these tragic deaths, University of Washington (UW) researchers developed a smartphone app called Second Chance, that they believe can save lives by quickly diagnosing when an opioid overdose has occurred.
The app uses sonar to monitor an opioid user’s breathing rate and, according to a UW press release, can detect overdose-related symptoms about 90% of the time from up to three feet away. The app then contacts the user’s healthcare provider or emergency services.
The UW researchers are applying for US Food and Drug Administration (FDA) clearance. They published their findings in the journal Science Translational Medicine.
While Demand for mHealth Apps Grows, Concern over Privacy and Security also Increases
According to mobile data and analytics company App Annie, global downloads of medical apps grew to more than 400 million in 2018, up 15% from two years earlier.
“As with mobile banking, consumers are showing they trust mobile apps with their most sensitive information and are willing to leverage them to replace tasks traditionally fulfilled in-person, such as going into a bank branch or, in the case of medical apps, to a doctor’s office,” App Annie’s website states.
However, the proliferation of mHealth apps has raised privacy and safety concerns as well. While the FDA does regulate some mobile health software functions, it does not ensure an mHealth app’s accuracy or reliability.
Fierce Healthcarereported that federal lawmakers are worried veterans who use the VA’s 47 mHealth apps could find their sensitive healthcare information shared or sold by third-party companies. In fiscal year 2018, veterans participated in more than one million video telehealth visits, a VA press release reported.
US Rep. Susie Lee, D-Nevada, Chairperson of the House Veterans’ Affairs Subcommittee on Technology Modernization, told Fierce Healthcare, “As we assess the data landscape at the VA and the larger health IT space, we need to look at where protections exist or don’t exist and whether we need more guardrails.”
What does all this mean for clinical laboratories? Well, lab managers will want to keep an eye on the growing demand from consumers who want direct access to laboratory test data and appointment scheduling through mHealth apps. And, also be aware of HIPAA regulations concerning the sharing of that information.
As digital healthcare continues to gain acceptance and regulatory support, clinical laboratories will need to help patients provide biological samples for virtual doctor visits
Patterns are emerging in healthcare that will likely impact clinical laboratories now and into the future. Trends in telehealth and mobile health (mHealth) that were just beginning to develop before the COVID-19 pandemic have accelerated with the outbreak, and many are predicted to remain once the pandemic is over, reported Healthcare Business and Technology.
Now comes virtual waiting rooms to go along with virtual doctor’s visits. One example is Banner Health of Phoenix, Arizona. The non-profit has more than 50,000 employees in Ariz. and is the state’s largest employer. It operates 28 hospitals and multiple specialty clinics in six states, making it one of the largest health systems in the US as well.
Banner Health is working with LifeLink to deploy virtual waiting rooms in all of its 300 clinics.
What is a Virtual Waiting Room?
The Banner Health System includes 1,500 physicians who work in 300 clinics. More than one million patients in Arizona, California, Colorado, Nebraska, Nevada, and Wyoming are part of the system.
In the not too distant past, when patients visited Banner Health providers and received doctor’s orders for diagnostic tests, they then went to clinical laboratories or the lab’s patient service centers to provide a biological specimen for testing.
Now, because of COVID-19, patients at Banner Health clinics access virtual waiting rooms through a mobile device or computer. They check in virtually for video visits and may not visit a doctor’s office or medical facility at all. Instead, they engage their healthcare provider through a telehealth connection.
The introduction of the virtual waiting rooms is Banner Health’s response to the need for social distancing during the COVID-19 pandemic.
The virtual waiting rooms employ LifeLink chatbots, which interact with patients in a conversational way, and are available for both telehealth and in-person appointments. The chatbots can:
provide appointment reminders,
guide patients through completing necessary paperwork,
provide instructions on using telehealth technology,
check patients in for appointments, and
direct patients to an exam room for in-person doctor visits.
Banner Health used similar technology for patients visiting their emergency departments.
Both Patients and Healthcare Providers Need to Adapt
“The COVID-19 pandemic requires an entirely different level of thinking when it comes to providing routine patient services,” said Greg Johnsen, CEO at LifeLink, in the Banner Health press release. “Like the changes we are seeing in retail, healthcare providers need to adapt, and the waiting room experience is one area that will need to change. We take great pride in knowing that LifeLink chatbots are providing peace of mind and convenience for patients that need to see their doctors.”
A significant innovation is that patients can easily engage with the chatbots through a “one-click authentication process and then interact through a standard web browser,” rather than requiring them to download and install a mobile device app, Healthcare IT News reported.
“One of the key benefits of this chatbot technology is the ease of use,” said Banner Health’s Jeff Johnson in the press release. “Interactions that use natural language eliminate the need for user training, and there are no apps or passwords required so it’s simple for patients to interact with us securely, on any device. We have seen high engagement rates as a result.”
One thing seems certain, as COVID-19 causes increased anxiety over social distancing, it is likely that virtual healthcare, telehealth, and digital pathology will continue to be developed in the medical industry.
This has implications for clinical laboratories, because if patients are being scheduled virtually, it is just a small additional step to have the doctor see them virtually via telehealth. In such circumstances, medical laboratories will need to have a way for the patient to provide a specimen for lab testing.
New advancements in mHealth, though encroaching on testing traditionally performed at clinical laboratories, offer opportunity to expand testing to remote locations
Mobile technology continues to impact clinical laboratories and anatomic pathology groups and is a major driver in precision medicine, as Dark Daily has reported. Most of the mobile-test development which incorporates smartphones as the testing device, however, has been for chemistry and immunoassay types of lab tests. Now, a new developer in Monmouth Junction, NJ, has created a Complete Blood Count (CBC) test that runs on devices attached to smartphones.
Such devices enable doctors to order test panels for patients in remote locations that also may lack resources, such as electricity.
The developer is Essenlix and it calls its new testing device iMOST (instant Mobile Self-Testing). According to the company’s website, which is mostly “Under Construction,” iMOST can provide “accurate blood and other healthcare testing in less than 60 seconds by a smartphone and matchbox-size-attachment, anywhere, anytime, and affordable to everyone.”
Stephen Chou, PhD, Professor of Electrical Engineering at Princeton University founded Essenlix, and told Business Insider that his company is developing something that will basically be “a mobile chemical biological lab in your hand.” (Photo copyright: Essenlix.)
The company description on the Longitude Prize website states that Essenlix “uses multidisciplinary approaches to develop a new innovative platform of simple, fast, ultrasensitive, bio/chemical sensing and imaging for life science, diagnostics, and personal health.
The Longitude Prize competition was established to promote the invention of “an affordable, accurate, fast and easy-to-use test for bacterial infections that will allow health professionals worldwide to administer the right antibiotics at the right time,” the website states.
The Essenlix iMOST mobile-testing device (above) connects to a smartphone (shown right) and enables clinical laboratory technicians to run tests in remote locations from samples taken at time the test. Though still in trials, iMOST, and other similar devices, promise to expand testing to outside of traditional medical laboratory locations and further promote precision medicine. (Photos copyright: Lydia Ramsey/Business Insider.)
Essenlix’s iMOST mobile testing system consists of:
a mobile application (app);
the device attachment, which goes over the phone’s camera; and,
a cartridge that holds a sample of blood.
So far, there have been two trials with a total of 92 participants, comparing traditional CBC testing with the Essenlix test. The results were within the FDA’s requirements for allowable error, prompting Chou to tell Business Insider, “Our error is clearly smaller than the FDA’s requirement, so the data is very, very good.”
Chou and his team are working toward FDA approval.
Other Testing Devices That Attached to Smartphones
Aydogan Ozcan, PhD, Professor of Electrical Engineering and Bioengineering at UCLA, and Mats Nilsson, PhD, Professor and Scientific Director of the Science for Life Laboratory at Stockholm University, have developed an attachment that they say can transform “a phone into a biomolecular analysis and diagnostics microscope,” according to The Pathologist. Dark Daily has published many e-briefings on Ozcan’s innovations over the years.
Their goal, the researchers said, was to create technology that can be used in low- and middle-income areas (LMICs), as well as in more advanced locations, such as Sweden. “I’ve been involved in other projects where we’ve looked at point-of-care diagnostic approaches,” he said, “and it seems to be very important that the devices [do not] rely on wired electricity or networks to serve not only LMICs, but also modern, developed environments. It’s often difficult to find an available power socket in Swedish hospitals.”
The molecular diagnostic tests that can be done with smartphone attachments—such as those developed by Ozcan and Nilsson—represent another way of using a smartphone in the healthcare arena, The Pathologist points out. Their invention combines the smartphone’s native camera, an app, optomechanical lasers, and an algorithm contained within the attachment to carry out fluorescence microscopy in the field.
Future of Mobile-Testing
An article appearing in the Financial Times describes some of the ways mobile technology is changing healthcare, including diagnostics that have traditionally been performed in the medical pathology laboratories.
“Doctors scan your body to look for irregularities, but they rely on pathologists in the lab to accurately diagnose any infection,” the article notes. “There, body fluids such as blood, urine, or spit are tested for lurking microbes or unexpected metabolites or chemicals wreaking havoc in your body. Now companies are miniaturizing these tests to create mobile pathology labs.”
Apple introduced the first iPhone in 2007. It’s doubtful anyone imagined the innovations in diagnostics and pathology that would soon follow. Thus, trying to predict what may be coming in coming decades—or even next year—would be futile. However, scientists and researchers themselves are indicating the direction development is headed.
Should Essenlix and other mobile-lab-test developers succeed in their efforts, it would represent yet another tectonic shift for medical pathology laboratories. Clinical laboratory managers and stakeholders should be ready, for the words of the ancient Greek philosopher Heraclitus have never been truer: “Change is the only constant in life.”
New low-cost alternatives to emergency department and hospital visits could require flexibility from pathology groups and clinical laboratories to provide the best quality care
In response to the rising cost of conventional hospital services, innovative healthcare models such as micro-hospitals, bedless hospitals, and mobile and freestanding emergency rooms (ERs), are attempting to lower costs while maintaining quality of care by providing alternatives to traditional ER visits and hospital stays.
This means new challenges and opportunities for pathology groups and medical laboratories that can adapt to the different needs of these new healthcare delivery models. Each different care model will want clinical lab testing services and the reporting of lab test results to be handled in ways that enable these providers to achieve improved patient outcomes. (more…)
As cognitive and cloud computing continue to advance, and mobile technologies become more accessible across the globe, innovative apps and mobile attachments are using algorithms to replace the need for complex and time-consuming diagnostic tests
Mobile healthcare—also known as mHealth—is attracting plenty of research dollars as entrepreneurs look for ways improve consumers’ access to various medical services in ways that could reduce healthcare costs. For that reason, some mHealth solutions may be used by clinical laboratories and pathology groups to give patients faster access to diagnostic services and information about medical laboratory tests.
Most mHealth solutions excel at doing a single, defined task well. In some cases, they are faster and as accurate as human-based testing or observation. However, few solutions can tackle complex diagnostics, such as determining the pathogens involved in sepsis. And mHealth cannot replace the human element of communication and empathy, which will always have a place in the medical process. (more…)