Supplychain shortages involving clinical laboratory products may not ease up any time soon, as China’s largest shipping province is once again in COVID-19 lockdown
Following two years of extremely high demand, pathology laboratories as well as non-medical labs in the United Kingdom (UK) and Europe are experiencing significant shortages of laboratory resources as well as rising costs. That’s according to a recently released survey by Starlab Group, a European supplier of lab products.
In its latest annual “mood barometer” survey of around 200 lab professionals in the UK, Germany, Austria, Italy, and France, Starlab Group received reports of “empty warehouses” and a current shortage of much needed lab equipment, reportedly as a result of rising costs, high demand, and stockpiling of critical materials needed by pathology laboratories during the COVID-19 pandemic, according to Laboratory News.
The survey respondents, who represented both medical laboratories and research labs, noted experiencing more pressure from staff shortages and insufficient supplies required to meet testing demands in 2021 as compared to 2020. For example, only 23% of respondents said they had enough liquid handling materials—such as protective gloves and pipettes—in 2021, down from 39% who responded to the same question in 2020.
“The entire laboratory industry has been in a vicious circle for two years. While more and more materials are needed, there’s a lack of supplies. At the same time, laboratories want to stockpile material, putting additional pressure on demand, suppliers, and prices,” Denise Fane de Salis, Starlab’s UK Managing Director and Area Head for Northern Europe, told Process Engineering. “Institutes that perform important basic work cannot keep up with the price competition triggered by COVID-19 and are particularly suffering from this situation,” she added.
Lab Supply Shortages Worsen in 2021
With a UK office in Milton Keynes, Starlab’s network of distributors specialize in liquid handling products including pipette tips, multi-channel pipettes, and cell culture tubes, as well as PCR test consumables and nitrile and latex gloves.
According to Laboratory News, Starlab’s 2021 annual survey, released in March 2022, found that:
64% cited late deliveries contributing to supply woes.
58% noted medical labs getting preference over research labs, up from 46% in 2020.
57% said demand for liquid handling products was the same as 2020.
30% of respondents said material requirements were up 50% in 2021, compared to 2020.
76% reported dealing with rising prices in lab operations.
29% expect their need for materials to increase by 25% in 2022, and 3% said the increase may go as high as 50%.
17% of respondents said they foresee challenges stemming from staff shortages, with 8% fearing employee burnout.
UK-European Medical Laboratories on Waiting Lists for Supplies
Could import of lab equipment and consumables from Asia and other areas outside UK have contributed to the shortages?
“A substantial portion of the world’s clinical laboratory automation, analyzers, instruments, and test kits are manufactured outside UK. Thus, UK labs may face a more acute shortage of lab equipment, tests, and consumables because governments in countries that manufacture these products are taking ‘first dibs’ on production, leaving less to ship to other countries,” said Robert Michel, Editor-in-Chief of Dark Daily and our sister publication The Dark Report.
Indeed, a statement on Starlab’s website describes challenges the company faces meeting customers’ requests for supplies.
“The pandemic also has an impact on our products that are manufactured in other countries. This particularly affects goods that we ship from the Asian region to Europe by sea freight. Due to the capacity restrictions on the ships, we expect additional costs for the transport of goods at any time. Unfortunately, the situation is not expected to ease for the time-being,” Starlab said.
Furthermore, economists are forecasting probable ongoing supply chain effects from a new SARS-CoV-2 outbreak in China.
Lockdown of China’s Largest Shipping Province Threatens Supply Chains Worldwide
According to Bloomberg News, “Shenzhen’s 17.5 million residents [were] put into lockdown on [March 13] for at least a week. The city is located in Guangdong, the manufacturing powerhouse province, which has a gross domestic product of $1.96 trillion—around that of Spain and South Korea—and which accounts for 11% of China’s economy … Guangdong’s $795 billion worth of exports in 2021 accounted for 23% of China’s shipments that year, the most of any province.”
Bloomberg noted that “restrictions in Shenzhen could inflict the heaviest coronavirus-related blow to growth since a nationwide lockdown in 2020, with the additional threat of sending supply shocks rippling around the world.”
“Given that China is a major global manufacturing hub and one of the most important links in global supply chains, the country’s COVID policy can have notably spillovers to its trading partners’ activity and the global economy,” Tuuli McCully, Head of Asia-Pacific Economies, Scotiabank, told Bloomberg News.
Wise medical laboratory leaders will remain apprised of supply chain developments and possible lockdowns in Asia while also locating and possibly securing new sources for test materials and laboratory equipment in anticipation of future supply shortages.
Decision is part of UK effort to diagnose 75% of all cancers at stage I or stage II by 2028 and demonstrates to pathologists that the technology used in liquid biopsy tests is improving at a fast pace
Pathologists and medical laboratory scientists know that when it comes to liquid biopsy tests to detect cancer, there is plenty of both hope and hype. Nevertheless, following a successful pilot study at the Christie NHS Foundation Trust in Manchester, England, which ran from 2015-2021, the UK’s National Health Service (NHS) is pushing forward with the use of liquid biopsy tests for certain cancer patients, The Guardian reported.
NHS’ decision to roll out the widespread use of liquid biopsies—a screening tool used to search for cancer cells or pieces of DNA from tumor cells in a blood sample—across the UK is a hopeful sign that ongoing improvements in this diagnostic technology are reaching a point where it may be consistently reliable when used in clinical settings.
The national program provides personalized drug therapies based on the genetic markers found in the blood tests of cancer patients who have solid tumors and are otherwise out of treatment options. The liquid biopsy creates, in essence, a match-making service for patients and clinical trials.
Liquid Biopsy Genetic Testing for Cancer Patients
“The learnings from our original ‘Target’ study in Manchester were that genetic testing needs to be done on a large scale to identify rare genetic mutations and that broader access to medicines through clinical trials being undertaken across the country rather than just one site are required,” Matthew Krebs, PhD, Clinical Senior Lecturer in Experimental Cancer Medicine at the University of Manchester, told The Guardian.
Krebs, an honorary consultant in medical oncology at the Christie NHS Foundation Trust, led the Target National pilot study.
“This study will allow thousands of cancer patients in the UK to access genetic testing via a liquid biopsy. This will enable us to identify rare genetic mutations that in some patients could mean access to life-changing experimental medicines that can provide great treatment responses, where there are otherwise limited or no other treatment options available.”
Detecting cancers at earlier stages of disease—when treatment is more likely to result in improved survival—has become a strategic cancer planning priority in the UK, theBMJ noted.
“The NHS is committed to diagnosing 75% of all cancers at stage I or II by 2028, from around 50% currently,” the BMJ wrote. “Achieving such progress in less than a decade would be highly ambitious, even without disruption caused by the COVID-19 pandemic. In this context, considerable hope has been expressed that blood tests for circulating free DNA—sometimes known as liquid biopsy—could help achieve earlier detection of cancers.”
The Guardian noted that the UK’s initiative will use a liquid biopsy test made by Swiss-healthcare giant Roche.
In her article “The Promise of Liquid Biopsies for Cancer Diagnosis,” published in the American Journal of Managed Care (AJMC) Evidence-based Oncology, serial healthcare entrepreneur and faculty lecturer at Harvard Medical School Liz Kwo, MD, detailed the optimism surrounding the “revolutionary screening tool,” including its potential for:
identifying mechanisms of resistance to therapies,
measuring remaining disease after treatment,
assessing cancer relapse or resistance to treatment, and
eliminating risk surrounding traditional biopsies.
The AJMC article estimated the liquid biopsy market will be valued at $6 billion by 2030. However, Kwo also noted that clinical adoption of liquid biopsies in the US continues to face challenges.
Welch compared the investor hype surrounding liquid biopsies to that of the now-defunct blood testing company Theranos, which lured high-profile investors to pour millions into its unproven diagnostic technology.
“Effective cancer screening requires more than early detection. It also requires that starting therapy earlier helps people live to older ages than they would if they started treatment later,” he wrote. “If that doesn’t happen, liquid biopsies will only lead to people living longer with the knowledge they have a potentially incurable disease without extending their lives. These people would be subjected to cancer therapies and their toxicities earlier, but at a time when they would otherwise be experiencing no cancer-related signs or symptoms.”
And so, while there’s much excitement about the possibility of a minimally invasive way to detect cancer, anatomic pathology groups and clinical laboratories will have to wait and see if the hype and hope surrounding liquid biopsies is substantiated by further research.
Under-resourced British healthcare system faces a record high backlog of care with 5.61 million people in England waiting for hospital-based medical procedures
Healthcare in the United Kingdom (UK) is about to become much more expensive. The UK government has announced plans to substantially increase payroll taxes to fund the surging demand for care due to the COVID-19 pandemic. But that may only be the part of the healthcare-funding iceberg visible above the surface. Below the surface is a healthcare system where wait times for access to many types of care—including cancer diagnoses—are already unacceptable.
Some pathologists and medical laboratory executives in the US who have long questioned healthcare reformers’ desire to introduce an NHS-like single-payer healthcare system in this country will not be surprised to learn that the UK’s notoriously underfunded National Health Service (NHS) is facing a record waitlist for hospital-based medical diagnostic tests and procedures.
Consequently, Reuters reported, the high cost of fighting the COVID-19 pandemic has pushed British Prime Minister Boris Johnson into breaking with election promises and announcing plans to raise payroll taxes to record levels so that more money can be funneled into the struggling government-run healthcare system.
5.6M People on Growing NHS Waiting List for Treatments and Procedures
When the COVID-19 pandemic struck the UK in March 2020, the NHS suspended elective surgeries such as hip or knee replacements and cataract removal and postponed many patients’ medical laboratory diagnostic tests.
In “Record 5.6M People in England Waiting for Hospital Treatment,” The Guardian estimated that 1.4 million patients were added to the waiting lists during the pandemic’s first 18 months. More than one-third of the 5.6 million people waiting for care in July 2021 had been on a waitlist for at least 18 months, the paper noted. Since then, the waiting list has grown by 150,000 people per month, as more people who did not seek or could not access NHS treatments during the pandemic returned to their doctors’ offices.
Johnson’s tax hike formula for fixing the record NHS backlog and improving social care for the elderly created shockwaves in the UK’s Conservative Party, which, like the Republican Party in this country, has championed low taxes. But Johnson maintains the government is out of options.
“It would be wrong for me to say that we can pay for this recovery without taking the difficult but responsible decisions about how we finance it,” Johnson told Parliament. “It would be irresponsible to meet the costs from higher borrowing and higher debt,” he added.
But Johnson’s proposal drew the wrath of some members of his own party and provided the opposition Labor Party with ammunition to denounce the prime minister’s leadership during the pandemic.
In “U.K. Is Among First Western Nations to Increase Taxes to Cover COVID-19 Costs,” The Wall Street Journal (WSJ) reported that Labor Party leader Keir Starmer compared Johnson’s tax increases to putting a bandage “on gaping wounds that his party inflicted,” and questioned why they weren’t levied more directly on the rich. The UK government says the wealthiest 14% will pay about half of the extra tax revenues, the WSJ noted.
“This is a tax rise that breaks a promise that the prime minister made at the last election … Read my lips, the Tories can never again claim to be the party of low tax,” Starmer told Reuters.
Politics versus Hard Facts
According to The Guardian, in 2023-2024, national insurance contributions will be rebranded as a health and social care levy, with more of the money raised going to social care. The added funding will enable the UK government to implement a new cap on total care costs so that no individual will pay more than £86,000 (US$117,142) over their lifetime for social-care programs. Currently, many seniors are forced to sell their homes to meet unexpected care costs, the newspaper noted.
“One message to voters and investors is that taxes are set to rise for years to come,” the WSJ editorial board wrote, predicting the cost of social care will escalate as the UK’s population ages, and that the planned diversion of future taxes for social care will be presented as a “cut” in NHS funding. They maintained that the danger in Johnson’s decision goes deeper than breaking an election campaign pledge or nationalizing more of the UK’s healthcare economy.
“The larger problem is that national healthcare and other entitlements become ever more unaffordable even as they are politically impossible to reform,” the newspaper stated. “The Tories are becoming tax collectors for the entitlement state, which is deadly for parties of the right.”
Bloomberg noted that the UK Institute for Fiscal Studies predicts the planned April 1 tax increase will “raise the UK tax burden to its highest-ever sustained level since records began in 1955—about 35% of national income.”
But, according to the UK-based The Health Foundation, at £2,646.95 (US$3,648.43) per person in 2019, the United Kingdom spends less on healthcare than many developed countries. Less per person than the:
US (£6,782.80),
Germany (£4,131.21),
France (£3,307.54),
Japan (£2,949.19) and
Canada (£2,823.07).
And when healthcare costs are viewed as a percentage of a country’s gross domestic product (GDP), the UK (8% GDP) lags behind the US (13.9%), Germany (9.9%), Japan (9.3%) and France (9.3%) and exceeds only Canada (7.6%) and Italy (6.4%).
While US hospitals, healthcare systems, and patients continue to struggle with ever-increasing healthcare costs, reformers who promote a single-payer healthcare system as an answer to this nation’s healthcare ills may want to take a hard look at the outcomes of the UK’s model.
Clinical laboratory managers and pathologists interested in how the US healthcare system can be improved might be well-served to study the experience of the National Health Service in the UK, that, like all other health systems in the world, has its own unique methods for how it serves its population.
With improved genetic sequencing comes larger human genome databases that could lead to new diagnostic and therapeutic biomarkers for clinical laboratories
As the COVID-19 pandemic grabbed headlines, the human genome database at the US Department of Veterans Affairs Million Veterans Program (MVP) quietly grew. Now, this wealth of genomic information—as well as data from other large-scale genomic and genetic collections—is expected to produce new biomarkers for clinical laboratory diagnostics and testing.
In December, cancer genomics company Personalis, Inc. (NASDAQ:PSNL) of Menlo Park, Calif., achieved a milestone and delivered its 100,000th whole human genome sequence to the MVP, according to a news release, which also states that Personalis is the sole sequencing provider to the MVP.
The VA’s MVP program, which started in 2011, has 850,000 enrolled veterans and is expected to eventually involve two million people. The VA’s aim is to explore the role genes, lifestyle, and military experience play in health and human illness, notes the VA’s MVP website.
Health conditions affecting veterans the MVP is researching include:
The VA has contracted with Personalis through September 2021, and has invested $175 million, Clinical OMICS reported. Personalis has earned approximately $14 million from the VA. That’s about 76% of the company’s revenue, according to 2nd quarter data, Clinical OMICS noted.
Database of Veterans’ Genomes Used in Current Research
What has the VA gained from their investment so far? An MVP fact sheet states researchers are tapping MVP data for these and other veteran health-related studies:
Differentiating between prostate cancer tumors that require treatment and others that are slow-growing and not life-threatening.
How genetics drives obesity, diabetes, and heart disease.
How data in DNA translates into actual physiological changes within the body.
Gene variations and patients’ response to Warfarin.
NIH Research Program Studies Effects of Genetics on Health
Another research program, the National Institutes of Health’s All of Us study, recently began returning results to its participants who provided blood, urine, and/or saliva samples. The NIH aims to aid research into health outcomes influenced by genetics, environment, and lifestyle, explained a news release. The program, launched in 2018, has biological samples from more than 270,000 people with a goal of one million participants.
The news release notes that more than 80% of biological samples in the All of Us database come from people in communities that have been under-represented in biomedical research.
“We need programs like All of Us to build diverse datasets so that research findings ultimately benefit everyone,” said Brad Ozenberger, PhD, All of Us Genomics Program Director, in the news release.
Precision medicine designed for specific healthcare populations is a goal of the All of Us program.
“[All of Us is] beneficial to all Americans, but actually beneficial to the African American race because a lot of research and a lot of medicines that we are taking advantage of today, [African Americans] were not part of the research,” Chris Crawford, All of US Research Study Navigator, told the Birmingham Times. “As [the All of Us study] goes forward and we get a big diverse group of people, it will help as far as making medicine and treatment that will be more precise for us,” he added.
Large Databases Could Advance Care
Genome sequencing technology continues to improve. It is faster, less complicated, and cheaper to sequence a whole human genome than ever before. And the resulting sequence is more accurate.
Thus, as human genome sequencing databases grow, researchers are deriving useful scientific insights from the data. This is relevant for clinical laboratories because the new insights from studying bigger databases of genomic information will produce new diagnostic and therapeutic biomarkers that can be the basis for new clinical laboratory tests as well as useful diagnostic assays for anatomic pathologists.
Because of ‘shelter in place’ orders, many anatomic pathologists are reviewing digital images from home during the COVID-19 outbreak and demonstrating the value of whole slide imaging, digital pathology, and CMS’ recent amended remote sign-out policy
COVID-19 is already triggering many permanent changes in the way healthcare is organized and delivered in the United States. However, not until the SARS-CoV-2 pandemic eases will the full extent of these changes become visible. This will be particularly true for anatomic pathology and the profession’s expanded use of telepathology, digital pathology, and whole-slide imaging.
Since early March, specimen referrals and revenues have collapsed at anatomic pathology groups and laboratories across the nation. Dark Daily’s sister publication, The Dark Report (TDR), was first to quantify the magnitude of this collapse in tissue referrals to pathology groups. In an interview with The Dark Report, Kyle Fetter, Executive Vice President and General Manager of Diagnostic Services at XIFIN, Inc., explained that pathology clients using XIFIN’s revenue cycle management services were seeing an average 40% decrease in specimens. And, for certain pathology sub-specialties, the drop-off in specimen referrals was as much as 90%. (See TDR, “From Mid-March, Labs Saw Big Drop in Revenue,” April 20, 2020.)
The College of American Pathologists (CAP) appealed to the Centers for Medicare and Medicaid Services (CMS) to allow pathologists to work remotely. In response, CMS issued a memorandum which stated, “Due to the public health emergency posed by COVID-19 and the urgent need to expand laboratory capacity, CMS is exercising its enforcement discretion to adopt a temporary policy of relaxed enforcement in connection with laboratories located at temporary testing sites under the conditions outlined herein.”
Since then, many physicians, including pathologists, have quickly adapted to working remotely in some form.
Push for Remote Pathology Services Acknowledges Anatomic Pathologist Shortage
The CMS memorandum (QSO-20-21-CLIA), which the federal agency issued to laboratory surveyors on March 26, 2020, notes that CMS will exercise “enforcement discretion to ensure pathologists may review pathology slides remotely” if certain defined conditions are met.
CMS’ decision, which “is applicable only during the COVID-19 public health emergency,” is intended to increase capacity by allowing remote site review of clinical laboratory data, results, and pathology slides.
Ordinarily, CLIA regulations for cytology (a branch of study that focuses on the biological structure of cells) state that cytology slide preparations must be evaluated on the premises of a laboratory that is certified to conduct testing in the subspecialty of cytology. However, a fast-acting Congressional letter sent by 37 members of Congress to US Department of Health and Human Services (HHS) Secretary Alex Azar II, MD, states, “it is unwise and unnecessary to overburden the remaining pathologists with excess work due to staffing shortages, thereby increasing the risk of burnout, medical error, and further shortages in staffing due to exposure. The number of COVID-19 cases will increase and peak over the next two months and will stretch existing healthcare systems to their limits.”
Decreasing Number of ‘Active Pathologists’ Drives Adoption of Telepathology, Digital Pathology, and Whole-slide Imaging
The current COVID-19 outbreak is just the latest factor in support of enabling remote review of anatomic pathology images and cases. The trend of using telepathology, whole-slide imaging (WSI), and digital pathology systems has been gathering momentum for several years. Powerful economic forces support this trend.
The Dark Report devoted its June 10, 2019, issue to a deep dive of the challenges currently facing the anatomic pathology profession. In particular, TDR noted a study published May 31, 2019, in the Journal of the American Medical Association (JAMA) Network Open, titled, “Trends in the US and Canadian Pathologist Workforces from 2007 to 2017.” The study’s authors—pathologists in the United States and Canada—reported that between 2007 and 2017 the number of active pathologists in the United States decreased from 15,568 to 12,839—a 17.53% decline.
TDR noted that these findings imply there are fewer pathologists in the United States today in active practice to handle the steady increase in the number of cases requiring diagnostic review. In turn, this situation could lead to delays in diagnoses detrimental to patient care.
Distinct Forces Beginning to Reshape Anatomic Pathology
In recent years, the anatomic pathology profession has faced growing financial pressure, a shrinking workforce, and a surge in the global demand for pathology—issues that come at a time when biopsies and cancer diagnostics require greater expertise.
The UCSF School of Medicine started with frozen slide sections and moved to the broader volume of pathology slides. Since 2015, UCSF’s School of Medicine has moved toward a fully digital pathology operation and has serialized the adoption by specialty, according to Zoltan Laszik, MD, PhD, attending physician at UCSF and Professor of Clinical Pathology in UCSF’s Departments of Pathology and Laboratory Medicine.
Laszik is among a handful of specialists and digital pathology early adopters who collaborated on the new Dark Daily white paper, which is available for free download.
Through the adoption of digital pathology, glass slides are digitized using a whole-slide image scanner, then analyzed through image viewing software. Although the basic viewing functionality is not drastically different than that provided by a microscope, digitization does bring improvements in lab efficiency, diagnostic accuracy, image management, workflows, and revenue enhancements.
Additionally, artificial intelligence (AI)-based computational applications have emerged as an integral part of the digital pathology workflow in some settings, the white paper explains.
“These developments are important to anatomic pathologists because the traditional pathology business model continues to transform at a steady pace,” noted Robert L. Michel, Editor-in-Chief of The Dark Report.
Anthony Magliocco, MD, FRCPC, FCAP, President and CEO of Protean BioDiagnostics and former Professor and Chair of Pathology at Moffitt Cancer Center, is featured in the white paper as well. His new pathology service model provides routine pathology services, precision oncology, second opinions, liquid biopsies, genetics, and genomics to cancer centers from a Florida-based specialty laboratory.
To register for this important learning opportunity, click here or place this URL in your web browser: https://www.darkdaily.com/webinar/streamlined-operations-increased-revenue-higher-quality-of-care-conclusive-evidence-on-the-value-of-adopting-digital-pathology-in-your-lab/.
These digital pathology technologies represent an innovative movement shaping the present and future of pathology services. Pathologists wanting to learn more are encouraged to sign up for the May 13 webinar, which will build on the body of evidence and commentary that is included in the new white paper, and which will be available for free on-demand download following the live broadcast.