News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Genome Sequencing of Tumors Are Helping Pathologist and Physicians Identify Useful Therapies for Patients with Unresponsive Cancers

Early research projects to sequence tumors in clinical settings are helping physicians and pathologists identify mutations that respond to specific therapeutic drugs

Step by step, progress is happening in the use of genome sequencing to advance personalized and precision medicine, with clinical laboratories and pathologists in the forefront of these developments. Much of this effort is focused on cancer and the sequencing of tumors.

One recent example comes from New York City, where the genomes of tumors of patients with unresponsive cancers were sequenced at the Institute for Precision Medicine at Weill Cornell and New York-Presbyterian Hospital Weill Cornell Medical Center. The outcomes of this effort demonstrates how the results of such testing can help patients who had not found an effective therapy to control their cancers. (more…)

California’s Massive Microarray SNP Genotyping Project Processed Genetic Data from More Than 100,000 Volunteers and Characterized 70 Billion Genetic Variants in 14 months

Faster sequencing speed and accuracy could fuel growth of biomarkers and lead to development of new medical laboratory tests and therapeutic drugs

Trailblazing methods used to create a treasure trove of genetic data from 100,000 Californians could pay dividends for clinical laboratories and pathology groups if similar projects identify novel biomarkers and fuel the development of new clinical laboratory tests and therapeutic drugs.

In fact, California is once again in the forefront, this time with a major program to create a big database of genetic data. The program is called the Genetic Epidemiology Research on Adult Health and Aging (GERA). It is a collaboration between the Kaiser Permanente Northern California Research Program on Genes, Environment, and Health (RPGEH) and the Institute for Human Genetics at the University of California, San Francisco (UCSF) that began in 2009. (more…)

Medical Scientists Call for Standard Method for Validating Antibodies Used in Research and Clinical Laboratory Diagnostics

Antibody validation standards would help ensure reproducibility of research studies and improve the consistency medical laboratory test results

As science and industry gets better at measuring things and assessing quality, the acceptable standard often comes into question. This seems to be happening with antibodies, the most common reagents used in diagnostics, clinical laboratory diagnostic tests, and medical research. In many cases, the end result is that companies and their suppliers must use new technologies and quality methods to revise the “old way” and create products that have measurable better quality.

The techniques currently used to validate antibodies is the topic of a recently-published scientific paper. The authors of a paper published in the March, 2010, issue of Biotechniques pointed out, antibody validation and standardization ensure study reproducibility, which is critical to accuracy. And yet, no standard guidelines define how these important biological tools should be validated prior to use.

Thus, researchers participating in a recent webinar, presented by The Scientist expressed concern that—without improved antibody validation and standardization—the accuracy of published research is in question and diagnostic test results, such as those produced by medical laboratories, will continue to be inconsistent. (more…)

NIST’s New Standard Genetic Reference Specimen Promises to Increase Accuracy of Clinical Pathology Laboratories Using Next-Generation Sequencing Technology

Sequencing this new DNA standard reference material enables medical laboratories to verify if their DNA test results are accurate

To reduce the variability in genetic test results that has been observed across different clinical laboratories and pathology groups, the National Institute for Standards and Technology (NIST) has introduced a new standard DNA reference. This is another step forward to improve transparency in the quality and accuracy of genetic test results produced by medical laboratories in the United States and abroad.

Even as scientists continue to identify genetic mutations that could cause various cancers and other diseases, such as Alzheimer’s and cystic fibrous, studies have demonstrated that DNA test results from the same specimen can vary depending on which medical laboratory performs the whole-genome sequencing analysis. This is partly due to variances in the technology, chemicals and processes used for the testing. Therefore, ensuring consistently reliable test results has been difficult, which could lead to inaccurate or missed diagnoses.

That is why a new standard DNA reference material developed by the National Institute for Standards and Technology has the potential to help DNA sequencing facilities to verify if their DNA test results are accurate. The new reference material, NIST RM 8398, was designed to improve the accuracy of diagnostic laboratories that analyze DNA using “next-generation sequencing” (NGS) technology. (more…)

Finding Genomes with ‘Knockout’ Genes Leads to Development of New Therapeutic Drugs, along with Clinical Laboratory Tests for these Biomarkers

Drugs based on knockout genes are expected to trigger the need for companion diagnostic tests that will be performed by pathologists and medical laboratory scientists

Pharmaceutical companies and other research programs are developing a new opportunity to use information from human genome sequencing to create a new class of therapeutic drugs. These drugs target “knockout genes” and those same genes are expected to be used as diagnostic biomarkers for clinical laboratory testing as a new field of companion diagnostics emerges.

In simplest terms, large-scale DNA sequencing of the human genome is enabling researchers to identify individuals with “knockout” genes and then develop therapeutic drugs based on that knowledge.

The first commercial success story from this partnership of geneticists and the pharmaceutical industry is expected to be a new class of drugs that lowers cholesterol. These drugs may reach pharmacy shelves this year, reported an October 24 Nature article. (more…)

;