News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

A Tale of Two Countries: As the US Ramps Up Medical Laboratory Tests for COVID-19, the United Kingdom Falls Short

Media reports in the United Kingdom cite bad timing and centralization of public health laboratories as reasons the UK is struggling to meet testing goals

Clinical pathologists and medical laboratories in UK and the US function within radically different healthcare systems. However, both countries faced similar problems deploying widespread diagnostic testing for SARS-CoV-2, the novel coronavirus that causes COVID-19. And the differences between America’s private healthcare system and the UK’s government-run, single-payer system are exacerbating the UK’s difficulties expanding coronavirus testing to its citizens.

The Dark Daily reported in March that a manufacturing snafu had delayed distribution of a CDC-developed diagnostic test to public health laboratories. This meant virtually all testing had to be performed at the CDC, which further slowed testing. Only later that month was the US able to significantly ramp up its testing capacity, according to data from the COVID Tracking Project.

However, the UK has fared even worse, trailing Germany, the US, and other countries, according to reports in Buzzfeed and other media outlets. On March 11, the UK government established a goal of administering 10,000 COVID-19 tests per day by late March, but fell far short of that mark, The Guardian reported. The UK government now aims to increase this to 25,000 tests per day by late April.

This compares with about 70,000 COVID-19 tests per day in Germany, the Guardian reported, and about 130,000 per day in the US (between March 26 and April 14), according to the COVID Tracking Project.

“Ministers need to explain why the NHS [National Health Service] is not testing to capacity, why we are falling behind other countries, and what measures they will put in place to address this situation as a matter of urgency,” MP Keir Starmer (above) said in Parliament in late March, The Guardian reported. (Photo copyright: The Guardian.)

What’s Behind the UK’s Lackluster COVID-19 Testing Response

In January, when the outbreak first hit, Public Health England (PHE) “began a strict program of contact tracing and testing potential cases,” Buzzfeed reported. But due to limited medical laboratory capacity and low supplies of COVID-19 test kits, the government changed course and de-emphasized testing, instead focusing on increased ICU and ventilator capacity. (Scotland, Wales, and Northern Ireland each have separate public health agencies and national health services.)

Later, when the need for more COVID-19 testing became apparent, UK pathology laboratories had to contend with global shortages of testing kits and chemicals, The Guardian reported. At present, COVID-19 testing is limited to healthcare workers and patients displaying symptoms of pneumonia, acute respiratory distress syndrome, or influenza-like illness, PHE stated in “COVID-19: Investigation and Initial Clinical Management of Possible Cases” guidance.

Another factor that has limited widespread COVID-19 testing is the country’s highly-centralized system of public health laboratories, Buzzfeed reported. “This has limited its ability to scale and process results at the same speed as other countries, despite its efforts to ramp up capacity,” Buzzfeed reported. Public Health England, which initially performed COVID-19 testing at one lab, has expanded to 12 labs. NHS laboratories also are testing for the SARS-CoV-2 coronavirus, PHE stated in “COVID-19: How to Arrange Laboratory Testing” guidance.

Sharon Peacock, PhD, PHE’s National Infection Service Interim Director, Professor of Public Health and Microbiology at the University of Cambridge, and honorary consultant microbiologist at the Cambridge clinical and public health laboratory based at Addenbrookes Hospital, defended this approach at a March hearing of the Science and Technology Committee (Commons) in Parliament.

“Laboratories in this country have largely been merged, so we have a smaller number of larger [medical] laboratories,” she said. “The alternative is to have a single large testing site. From my perspective, it is more efficient to have a bigger testing site than dissipating our efforts into a lot of laboratories around the country.”

Writing in The Guardian, Paul Hunter, MB ChB MD, a microbiologist and Professor of Medicine at University of East Anglia, cites historic factors behind the testing issue. The public health labs, he explained, were established in 1946 as part of the National Health Service. At the time, they were part of the country’s defense against bacteriological warfare. They became part of the UK’s Health Protection Agency (now PHE) in 2003. “Many of the laboratories in the old network were shut down, taken over by local hospitals or merged into a smaller number of regional laboratories,” he wrote.

US Facing Different Clinical Laboratory Testing Problems

Meanwhile, a few medical laboratories in the US are now contending with a different problem: Unused testing capacity, Nature reported. For example, the Broad Institute of MIT and Harvard in Cambridge, Mass., can run up to 2,000 tests per day, “but we aren’t doing that many,” Stacey Gabriel, PhD, a human geneticist and Senior Director of the Genomics Platform at the Broad Institute, told Nature. Factors include supply shortages and incompatibility between electronic health record (EHR) systems at hospitals and academic labs, Nature reported.

Politico cited the CDC’s narrow testing criteria, and a lack of supplies for collecting and analyzing patient samples—such as swabs and personal protective equipment—as reasons for the slowdown in testing at some clinical laboratories in the US.

Challenges Deploying Antibody Tests in UK

The UK has also had problems deploying serology tests designed to detect whether people have developed antibodies against the virus. In late March, Peacock told members of Parliament that at-home test kits for COVID-19 would be available to the public through Amazon and retail pharmacy chains, the Independent reported. And, Politico reported that the government had ordered 3.5 million at-home test kits for COVID-19.

However, researchers at the University of Oxford who had been charged with validating the accuracy of the kits, reported on April 5 that the tests had not performed well and did not meet criteria established by the UK Medicines and Healthcare products Regulatory Agency (MHRA). “We see many false negatives (tests where no antibody is detected despite the fact we know it is there), and we also see false positives,” wrote Professor Sir John Bell, GBE, FRS, Professor of Medicine at the university, in a blog post. No test [for COVID-19], he wrote, “has been acclaimed by health authorities as having the necessary characteristics for screening people accurately for protective immunity.”

He added that it would be “at least a month” before suppliers could develop an acceptable COVID-19 test.

Meanwhile, in the US, on April 1 the FDA issued an Emergency Use Authorization (EUA) for the qSARS-CoV-2 IgG/IgM Rapid Test developed by Cellex Inc. in N.C., the Washington Times reported. Cellex reported that its test had a 93.75% positive agreement with a PCR (polymerase chain reaction) test and a 96.4% negative agreement with samples collected before September 2019.

In the United States, the Cellex COVID-19 test is intended for use by medical laboratories. As well, many research sites, academic medical centers, clinical laboratories, and in vitro diagnostics (IVD) companies in the US are working to develop and validate serological tests for COVID-19.

Within weeks, it is expected that a growing number of such tests will qualify for a Food and Drug Administration (FDA) Emergency Use Authorization (EUA) and become available for use in patient care.

—Stephen Beale

Related Information:

Why the UK Failed to Get Coronavirus Testing Up to Speed

Even the US Is Doing More Coronavirus Tests than the UK. Here Are the Reasons Why

Fall in Covid-19 Tests Putting Lives at Risk, Critics Claim

UK Ministers Accused of Overstating Scale of Coronavirus Testing

Coronavirus: Government Sets Target for 100,000 Tests Per Day by End of Month

Coronavirus Test: UK To Make 15-Minute At-Home Kits Available ‘Within Days’

Coronavirus: Can I Get a Home Testing Kit and What Is an Antibody Test?

Covid-19 Testing in the UK: Unpicking the Lockdown

Current COVID-19 Antibody Tests Aren’t Accurate Enough for Mass Screening, Say Oxford Researchers

Thousands of Coronavirus Tests Are Going Unused in US Labs

Exclusive: The Strongest Evidence Yet That America Is Botching Coronavirus Testing

Coronavirus Testing Hits Dramatic Slowdown in US

Coronavirus Testing Is Starting to Get Better—But It Has a Long Way to Go

Was It Flu or the Coronavirus? FDA Authorizes First COVID-19 Antibody Test

Medical Laboratories Need to Prepare as Public Health Officials Deal with Latest Coronavirus Outbreak

Could Clinical Laboratories and Pathologists Have a New Use for DNA as a Data Storage Technology?

Researchers in Boston are working to develop DNA as a low-cost, effective way to store data; could lead to new molecular technology industries outside of healthcare

Even as new insights about the role of DNA in various human diseases and health conditions continue to tumble out of research labs, a potential new use for DNA is emerging. A research team in Boston is exploring how to use DNA as a low-cost, reliable way to store and retrieve data.

This has implications for the nation’s clinical laboratories and anatomic pathology groups, because they are gaining experience in sequencing DNA, then storing that data for analysis and use in clinical care settings. If a way to use DNA as a data storage methodology was to become reality, it can be expected that medical laboratories will have the skillsets, experience, and information technology infrastructure already in place to offer a DNA-based data storage service. This would be particularly true for patient data and healthcare data.

Finding a way to reduce the cost of data storage is a primary reason why scientists are looking at ways that DNA could be used as a data storage technology. These scientists and technology developers seek ways to alleviate the world’s over-crowded hard drives, cloud servers, and databases. They hope this can be done by developing technologies that store digital information in artificially-made versions of DNA molecules.

The research so far suggests DNA data storage could be used to store data more effectively than existing data storage solutions. If this proves true, DNA-based data storage technologies could play a key role in industries outside of healthcare.

If so, practical knowledge of DNA handling and storage would be critical to these companies’ success. In turn, this could present unique opportunities for medical laboratory professionals.

DNA Data Storage: Durable but Costly

Besides enormous capacity, DNA-based data storage technology offers durability and long shelf life in a compact footprint, compared to other data storage mediums.

“DNA has an information-storage density several orders of magnitude higher than any other known storage technology,” Victor Zhirnov, PhD, Chief Scientist and Director, Semiconductor Research Corporation, told Wired.

However, projected costs are quite high, due to the cost of writing the information into the DNA. However, Catalog Technologies Inc. of Boston thinks it has a solution.

Rather than producing billions of unique bits of DNA, as Microsoft did while developing its own DNA data storage solution, Catalog’s approach is to “cheaply generate large quantities of just a few different DNA molecules, none longer than 30 base pairs. Then [use] billions of enzymatic reactions to encode information into the recombination patterns of those prefab bits of DNA. Instead of mapping one bit to one base pair, bits are arranged in multidimensional matrices, and sets of molecules represent their locations in each matrix.”

The Boston-based company plans to launch an industrial-scale DNA data storage service using a machine that can daily write a terabyte of data by leveraging 500-trillion DNA molecules, according to Wired. Potential customers include the entertainment industry, federal government, and information technology developers.

Catalog is supported by $9 million from investors. However, it is not the only company working on this. Microsoft and other companies are reportedly working on DNA storage projects as well.

“It’s a new generation of information storage technology that’s got a million times the information density, compared to flash storage. You can shrink down entire data centers into shoeboxes of DNA,” Catalog’s CEO, Hyunjun Park, PhD (above center, between Chief Science Officer Devin Leake on left and Milena Lazova, scientist, on right), told the Boston Globe. (Photo copyright: Catalog.)

Microsoft, University of Washington’s Synthetic DNA Data Storage

Microsoft and researchers at the University of Washington (UW) made progress on their development of a DNA-based storage system for digital data, according to a news release. What makes their work unique, they say, is the large-scale storage of synthetic DNA (200 megabytes) along with the ability to the retrieve data as needed.

“Synthetic DNA is durable and can encode digital data with high density, making it an attractive medium for data storage. However, recovering stored data on a large-scale currently requires all the DNA in a pool to be sequenced, even if only a subset of the information needs to be extracted,” the researchers wrote in their paper published in Nature Biotechnology.

“Here, we encode and store 35 distinct files (over 200 megabytes of data ) in more than 13-million DNA oligonucleotides and show that we can recover each file individually and with no errors, using a random access approach,” the researchers explained.

“Our work reduces the effort, both in sequencing capacity and in processing, to completely recover information stored in DNA,” Sergey Yekhanin, PhD, Microsoft Senior Researcher, told Digital Trends.

Successful research by Catalog, Microsoft, and others may soon lead to the launch of marketable DNA data storage services. And medical laboratory professionals who already know the code—the life code that is—will likely find themselves more marketable as well!

—Donna Marie Pocius

Related Information:

The Rise of DNA Data Storage

The Next Big Thing in Data Storage is Actually Microscopic

Catalog Hauls in $9 Million to Make DNA-Based Data Storage Commercially Viable

UW and Microsoft Researchers Achieve Random Access in Large-Scale DNA Data Storage

Random Access in Large-Scale DNA Data Storage

Microsoft and University of Washington Show DNA Can Store Data in Practical Way

Top-5 Diagnostics Trends Identified by Kalorama Will Impact In Vitro Diagnostics Manufacturers, Medical Laboratories in 2017

Report states IVD companies are focusing on core lab, seeking China FDA approval, and targeting urgent care

Several of the same powerful trends reshaping healthcare and clinical laboratory services are having equally significant influence on in vitro diagnostics (IVD) manufacturers. In particular, the consolidation of hospitals and physicians, as well as the emergence of new sites of service—such as urgent care centers and retail clinics—are motivating IVD companies to tailor new diagnostic systems to the unique needs of these entities.

Kalorama, a division of MarketResearch.com, has released its list of Top-Trends that will affect IVD developers in 2017. IVDs are at the heart of the medical laboratory industry. Thus, these reports are critical to keeping clinical laboratory managers and pathology groups informed on anything that could affect the production, voracity, and availability of diagnostic testing. (more…)

Lab-on-a-Chip Diagnostics: When Will Clinical Laboratories See the Revolution?

Offering lower costs and quicker returns than much of the traditional lab equipment in use today, lab-on-a-chip devices are again in a position to revolutionize pathology and medical laboratory work

For nearly 20 years, researchers have heralded microfluidic devices, paper-based diagnostics, and other lab-on-a-chip (LOC) technologies, as ways for medical laboratory scientists, pathologists, and other medical diagnostic professionals to reduce the time and costs of clinical laboratory services. With the promise of obtaining results in just minutes without the need for extensive training, these point-of-care tests and devices create big buzz with each new design.

An yet, after all that progress, most laboratories still depend on their spectrometers, flow cytometers, blood analyzers, and other equipment for the bulk of their testing and routines.

That leaves one major question for clinical laboratory professionals and chip developers alike—when is the revolution? (more…)

Paper Microfluidic Devices Offer New Potential for Affordable Point-of-Care Tests for Use in Developing Countries That Have Few Clinical Laboratories

Paper-based devices could perform complex, multistep diagnostic tests at a fraction of the cost of traditional medical laboratory analysis

Many research teams are racing to create paper-based devices for medical laboratory tests. Their primary goal is develop a cheap, fast, reliable way to perform diagnostic testing in third world settings, where modern clinical laboratories are few and far between. One development team is working to combine lab-on-a-chip technologies with the low cost of paper-based platforms.

Meanwhile, over the past decade, point-of-care testing (POCT) has revolutionized diagnosis and treatment options for a myriad of conditions. In developing regions or remote areas, low-cost POCT improves accessibility to vital tests for infectious diseases, such as HIV, Malaria, and Ebola, as well as acute medical conditions, such as sepsis.

In the past eight years, Dark Daily has reported many times on the emergence of new POCT devices. From lactic acid screening to the lab-in-a-needle, which is used for detecting liver toxicity, the ability to produce a quick and accurate diagnosis without intensive clinical laboratory testing is growing.

However, one area where many POCT devices face challenges is in surviving extended environmental exposure. This does not pose an issue in major research hospitals or health systems. However, the consequences can be severe when considering the often harsh, resource-limited conditions of developing countries—one area in which POCT stands to offer the greatest value. (more…)

;