Not the first smart diaper to come along, but consumers seem unready for diapers that can flag urinary tract infections and other biomarkers usually tested by clinical laboratories
Will wonders never cease? For centuries, parents had only their own senses to determine when infants needed diaper changing. Today, however, caregivers can rely on “smart diapers” to send alerts when a diaper is soiled. Crying, smelly babies may no longer be the gold standard in diaper management. But are smart diapers practical?
The sensor array is “so cheap and simple” it “could clear the way for wearable, self-powered health monitors for use not only in ‘smart diapers’ but also to predict major health concerns like cardiac arrest and pneumonia,” a Penn State new release noted.
However, clinical laboratory managers following similar developments probably know that this is not the first scientific effort to develop a smart diaper that uses some type of sensor to detect a biomarker and issue an alert to the wearer or caregivers.
“Our team has been focused on developing devices that can capture vital information for human health,” said Huanyu “Larry” Cheng, PhD (above), the James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State in a news release. “The goal is early prediction for disease conditions and health situations, to spot problems before it is too late.” This is yet another example of how researchers are working to take more testing out of clinical laboratories and offer unique assays that can be used as wearables—whether as a diaper, a skin patch, or a smart watch. (Photo copyright: Penn State University.)
This Smart Diaper Is as Simple to Use as Paper and Pencil
The Penn State sensor array takes advantage of how paper naturally reacts to wetness and utilizes the graphite in pencil marking to interact with the water molecules and sodium chloride.
Once the water molecules are absorbed by the paper, the sodium chloride solution becomes ionized and electrons start to stream towards the graphite. This movement sets off the sensor, which is extremely sensitive to humidity. According to the study, the sensor can provide accurate readings over a wide range of humidity levels, from 5.6% to 90%.
“We wanted to develop something low-cost that people would understand how to make and use, and you can’t get more accessible than pencil and paper,” said Li Yang, PhD, a professor in the School of Artificial Intelligence at China’s Hebei University of Technology and one of the authors of the study, in the Penn State news release.
“You don’t need to have some piece of multi-million-dollar equipment for fabrication. You just need to be able to draw within the lines of a pre-drawn electrode on a treated piece of paper. It can be done simply and quickly.”
The diaper is connected to a tiny lithium battery. When the sensor recognizes an increase in humidity the battery powers transmission of the change to a smartphone via Bluetooth technology. This notification informs caregivers that it is time to change the diaper.
“That application was actually born out of personal experience,” explained Huanyu “Larry” Cheng, PhD, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State, one of the authors of the study and father to two young children. “There’s no easy way to know how wet is wet, and that information could be really valuable for parents. The sensor can provide data in the short-term, to alert for diaper changes, but also in the long-term, to show patterns that can inform parents about the overall health of their child.”
Do Consumers Want Smart Diapers?
Research into such wearable sensors has been gaining momentum in the scientific community as a novel way to detect and deal with several medical conditions. The Penn State team hopes that devices such as their smart diaper can be used in the future to alert caregivers about the overall health of their children and clients.
“Our team has been focused on developing devices that can capture vital information for human health,” Cheng said. “The goal is early prediction for disease conditions and health situations, to spot problems before it is too late.”
Previous research teams have had similar smart diaper goals.
However, these types of products have yet to gain significant popularity with consumers. Regardless, sales projections for smart diapers remain positive.
According to a MarketsandMarkets report, the smart diaper market, estimated to be $646 million (US) in 2021, is expected to surpass $1.5 billion by 2026. The demand for smart diapers, the report notes, is increasing due to:
Growing elderly populations,
Rising disposable incomes,
Increasing personal hygiene awareness,
Growing populations in emerging countries, and
Expanding preference for advanced technology when it comes to health.
So, it’s uncertain if consumers are now ready for a device in their baby’s diaper telling them it’s time for a change. Regardless, researchers will likely continue developing tools that combine new diagnostics with existing products to help people better understand and monitor their health and the health of their loved ones.
Meanwhile, clinical laboratory managers and pathologists can remain on the alert for future published studies and press releases announcing new wearable items containing sensors, such as smart diapers. The unanswered question is whether both consumers and healthcare professionals will consider these novel inventions useful devices in the care of young and old alike.
The 80 scientists and engineers that comprise the consortium believe synthetic biology can address key challenges in health and medicine, but technical hurdles remain
Synthetic biology now has a 20-year development roadmap. Many predict this fast-moving field of science will deliver valuable products that can be used in diagnostics—including clinical laboratory tests, therapeutics, and other healthcare products.
Eighty scientists from universities and companies around the world that comprise the Engineering Biology Research Consortium (EBRC) recently published the 20-year roadmap. They designed it to “provide researchers and other stakeholders (including government funders)” with what they hope will be “a go-to resource for engineering/synthetic biology research and related endeavors,” states the EBRC Roadmap website.
Medical laboratories and clinical pathologists may soon have new tools and therapies for targeting specific diseases. The EBRC defines synthetic biology as “the design and construction of new biological entities such as enzymes, genetic circuits, and cells or the redesign of existing biological systems. Synthetic biology builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing.”
Synthetic biology is an expanding field and there are predictions that it may produce research findings that can be adapted for use in clinical pathology diagnostics and treatment for chronic diseases, such as cancer.
Another goal of the roadmap is to encourage federal
government funding for synthetic biology.
“The question for government is: If all of these avenues are now open for biotechnology development, how does the US stay ahead in those developments as a country?” said Douglas Friedman, EBRC’s Executive Director, in a news release. “This field has the ability to be truly impactful for society and we need to identify engineering biology as a national priority, organize around that national priority, and take action based on it.”
Designing or Redesigning Life Forms for Specific
Applications
Synthetic biology is an interdisciplinary field that combines
elements of engineering, biology, chemistry, and computer science. It enables
the design and construction of new life forms—or redesign of existing ones—for
a multitude of applications in medicine and other fields.
Another recent example comes from the Wyss Institute at Harvard. Scientist there developed a direct-to-consumer molecular diagnostics platform called INSPECTR that, they say, uses programmable synthetic biosensors to detect infectious pathogens or host cells.
The Wyss Institute says on its website that the platform can
be packaged as a low-cost, direct-to-consumer test similar to a home pregnancy
test. “This novel approach combines the specificity, rapid development, and
broad applicability of a molecular diagnostic with the low-cost, stability, and
direct-to-consumer applicability of lateral flow immunoassays.”
In March, Harvard announced that it had licensed the technology to Sherlock Biosciences.
Fundamental Challenges with Synthetic Biology
The proponents of synthetic biology hope to make it easier
to design and build these systems, in much the same way computer engineers
design integrated circuits and processors. The EBRC Roadmap may help scientist
worldwide achieve this goal.
However, in “What is Synthetic/Engineering Biology?” the EBRC also identifies the fundamental challenges facing the field. Namely, the complexity and unpredictability inherent in biology, and a limited understanding of how biological components interact.
The EBRC roadmap report, “Engineering Biology: A Research
Roadmap for the Next-Generation Bioeconomy,” covers five categories of applications:
Health and medicine are of primary interest to pathologists.
Synthetic Biology in Health and Medicine
The Health and Medicine section of the report identifies
four broad societal challenges that the EBRC believes can be addressed by
synthetic biology. For each, the report specifies engineering biology
objectives, including efforts to develop new diagnostic technologies. They
include:
Existing and emerging infectious diseases: Objectives include development of tools for treating infections, improving immunity, reducing dependence on antibiotics, and diagnosing antimicrobial-resistant infections. The authors also foresee tools for rapid characterization and response to “known and unknown pathogens in real time at population scales.”
Non-communicable diseases and disorders, including cancer, heart disease, and diabetes: Objectives include development of biosensors that will measure metabolites and other biomolecules in vivo. Also: tools for identifying patient-specific drugs; tools for delivering gene therapies; and genetic circuits that will foster tissue formation and repair.
Environmental health threats, such as toxins, pollution, and injury: Objectives include systems that will integrate wearable tech with living cells, improve interaction with prosthetics, prevent rejection of transplanted organs, and detect and repair of biochemical damage.
Healthcare access and personalized medicine: The authors believe that synthetic biology can enable personalized treatments and make new therapies more affordable.
Technical Themes
In addition to these applications, the report identifies
four “technical themes,” broad categories of technology that will spur the
advancement of synthetic biology:
Gene editing, synthesis, and assembly: This refers to tools for producing chromosomal DNA and engineering whole genomes.
Biomolecule, pathway, and circuit engineering: This “focuses on the importance, challenges, and goals of engineering individual biomolecules themselves to have expanded or new functions,” the roadmap states. This theme also covers efforts to combine biological components, both natural and non-natural, into larger, more-complex systems.
Host and consortia engineering: This “spans the development of cell-free systems, synthetic cells, single-cell organisms, multicellular tissues and whole organisms, and microbial consortia and biomes,” the roadmap states.
Data Integration, modeling, and automation: This refers to the ability to apply engineering principles of Design, Build, Test and Learn to synthetic biology.
The roadmap also describes the current state of each
technology and projects likely milestones at two, five, 10, and 20 years into
the future. The 2- and 5-year milestones are based on “current or recently
implemented funding programs, as well as existing infrastructure and facilities
resources,” the report says.
The longer-term milestones are more ambitious and may
require “significant technical advancements and/or increased funding and
resources and new and improved infrastructure.”
Synthetic biology is a significant technology that could
bring about major changes in clinical pathology diagnostics and treatments.
It’s well worth watching.
Pathologists will be interested to learn that this latest version of the acoustic tweezer device requires about five hours to identify the CTCs in a sample of blood
Medical laboratory leaders and pathologists are well aware that circulating tumor cells (CTCs) released by primary tumors into the bloodstream are fragile and easily damaged. Many studies have sought to find ways to separate CTCs from surrounding cells. Such a process could then be used as an early-detection biomarker to detect cancer from a sample of blood.
One team of researchers believe it has a way to accomplish this. These researchers are using sound waves to gently detect and isolate CTCs in blood samples. In turn, this could make it possible to diagnose cancer using “liquid biopsies” as opposed to invasive conventional biopsies.
Researchers at Penn State identified 160,000 ‘transcription initiation machines’ throughout the human genome
DNA “dark matter” may have something in common with comedian Rodney Dangerfield, who liked to say, “I don’t get no respect!” As many pathologists know, for years the human exome that has been the focus of most research. This is the 1% of the human genome that contains the genes that produce proteins and do other useful functions.
Meanwhile, the remaining 99% of the human genome—sometimes called “junk DNA” and generally known as dark matter—got relatively little attention from researchers. But that is changing. At Pennsylvania State University, a research team has discovered that coding and noncoding RNA, or genomic dark matter, originates at the same types of locations along the human genome. (more…)