Funded by the CDC, the program hopes to alleviate personnel shortages in Baltimore area clinical labs while also producing a knowledge base for lab managers nationwide
Clinical laboratory managers struggling to fill vacant phlebotomy and accessioning positions will be interested to learn about a pilot program being conducted by the City of Baltimore and the University of Maryland School of Medicine to train people “for employment in hospital laboratories, phlebotomy draw sites, and reference laboratory processing centers,” according to The Elm, a publication of the University of Maryland, Baltimore.
The 14-week “Mayor’s Workforce Development Program” began on April 19 and will continue through the end of July. Participants meet twice a week for lectures and experience working with specimens in actual medical laboratories or in a “hybrid learning environment,” The Elm reported.
“I came up with the idea of doing cross-training for laboratory people and public health people in case there is another pandemic,” explained Lorraine Doucette in an exclusive interview with Dark Daily. Doucette, who is managing the pilot program, is an Assistant Professor and Medical Laboratory Science Program Director, Department of Medical and Research Technology, University of Maryland School of Medicine.
“There is already a huge shortage of laboratory people, but an enormous amount left in droves during the pandemic because they got physically burned out. Some just could not do the work anymore because of things like carpal tunnel syndrome and repetitive stress injuries,” she added.
“I’m confident that all 15 or 16 students who complete this workforce program will be employed within weeks of finishing as accessioners,” said Lorraine Doucette (above), Assistant Professor and Medical Laboratory Science Program Director, Department of Medical and Research Technology, University of Maryland School of Medicine, in an exclusive interview with Dark Daily. “This has been so successful. This is making a difference in people’s lives. This is changing them from being unemployed to actually having a career in a clinical laboratory. They love it. They are so proud of themselves.” (Photo copyright: LinkedIn.)
CDC Funding Part of National Program to ‘Enhance’ Clinical Lab Workforce
The collaboration is part of a CDC project titled, “Enhancing US Clinical Workforce Capacity.’ Doucette will receive a total of one million dollars over the course of three years to facilitate the program in stages.
“It is not necessarily an old-fashioned grant where they just gave me a pile of money,” Doucette told Dark Daily. “The CDC works with me constantly via reports and Zoom meetings.”
This CDC project is designed to both cross train clinical laboratory professionals in public health, clinical chemistry, microbiology, and hematology, as well as to train individuals in the workforce development program to become laboratory accessioners.
“They are going to be qualified to work as an accessioner in any local hospital,” Doucette noted. “The people who pick up the lab samples out of the tube system are the accessioners and there is a huge shortage of them also. We’re teaching them the basics so the more advanced lab personnel can perform the higher-level work.”
Students in the program learn all about lab safety and the proper handling of lab samples as well as proper data entry, professionalism, and how to communicate with medical and laboratory personnel. They work with urine and blood samples and fabricated spinal fluid samples.
“They are taught about the different tubes, what the anticoagulants are, what makes each tube unique, why you can’t mix samples, balancing a centrifuge, and how to properly put on and remove safety gear like lab coats, gloves, and goggles,” Doucette explained.
The Mayor’s Workforce Development Program is free for Baltimore residents looking for employment via the workforce office. The only requirements for enrolling are having a high school education and being fully vaccinated.
Phlebotomy and Additional Cross-training to Be Added
Doucette would eventually like to add a phlebotomy segment to future training sessions. “We would like to develop an additional partnership with BCCC (Baltimore City Community College) for the phlebotomy piece. That would definitely increase the people and the program’s marketability,” she said. “They could not only draw the blood, but they could also process the sample.”
After assessing the success of the current program and determining what did and did not work, there will be an additional training session held in the fall. Next year, there will be more sessions held for individuals in the workforce program and cross-training classes for current clinical laboratory professionals.
The strategy for the third year of the grant includes sharing the specifics of the program with medical laboratory professionals via the CDC’s free OneLab REACH platform. This portion includes the online delivery of documentation such as training sheets, lab exercises, Microsoft PowerPoint presentations, and videos used in both the accessioning and cross-training coursework.
“We’re going to do the OneLab REACH,” Doucette said. “I’m going to be putting it all online and marketing it all around the country in stages and increments. I will be going to a lot of professional society meetings and talking to lab managers to help them understand the concept of how this all benefits them.”
This unique collaboration between the City of Baltimore and University of Maryland School of Medicine, funded by the CDC, should help alleviate some of the clinical laboratory worker shortages that exist in the Baltimore area. Hopefully, the effort will result in additional knowledge, resources, and tools to assist medical lab managers across the country to recruit and retain talented, highly-skilled workers.
Program launched by a Rochester-area technical center is intended to provide early study for students interested in a career in clinical laboratory medicine
Acute shortages of clinical laboratory staff across all types of skills is one of the big stories of this new year. It is also triggering unconventional approaches to reach students in high school and interest them in careers as medical technologists (MTs). One such example is a high school in New York that now offers a top-level medical laboratory program designed to create interest—then train—high school students for a career in laboratory medicine.
“With the acute shortage of medical technologists, this effort by one high school to reach students early and encourage them to pursue a career in clinical laboratory medicine should be of interest to all laboratory professionals,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication The Dark Report.
“Our juniors and seniors in high school will learn about 60 employable laboratory skills,” said Jim Payne (above), a Medical Laboratory Assisting and Phlebotomy program instructor at WEMOCO. “They learn not only medical laboratory skills, but [the skills] are transferable to biotechnology, to chemical labs, food labs, environmental labs, research, forensics, and so on. The goal is each individual student comes out skilled in all 60 skills.” Clinical laboratories may want to explore creating similar programs with high schools in their own areas. (Photo copyright: Twitter.)
Dynamic Curriculum of Clinical Laboratory Skills
During the first year of the WEMOCO program, students learn skills that Jim Payne, a Medical Laboratory Assisting and Phlebotomy program instructor at WEMOCO, stated he learned in college. These include:
The students also learn the theories and techniques behind phlebotomy and how to perform blood draws (venipuncture).
Students spend 40 hours drawing blood samples from real patients in local medical laboratories and can earn a certification as a Phlebotomy Technician after completing the necessary coursework.
During the second year of the program, students learn college-level:
They also receive their certifications in American Red Cross CPR/AED and First Aid and spend 80 hours actually working in local clinical laboratories. Upon completion of the second year of coursework, students can earn a certification as a Certified Medical Laboratory Assistant.
“In both cases, they can get jobs straight out of the program,” said Payne in the CLP podcast. “But a lot of our grads go on to college for medical laboratory careers.”
Overcoming Vocational School Stigma
Recruiting students into the program was initially challenging as some of the negative stigma surrounding non-traditional coursework had to be overcome. Vocational education is now referred to as career and technical education and the WEMOCO program is more academically focused than previous vocational studies. Students can obtain some college credits when completing the two-year program.
“With my students, when we are teaching them how to do the math around making laboratory solutions, for example, that requires algebra,” Payne explained. “And they have to actually make something with the algebra and suddenly it starts to make a lot more sense than the way that they were taught in a traditional high school.”
In addition, some students interested in the program struggled in a typical high school environment due to lack of direction, according to Payne. However, when those same students found their focus, discovered a passion, and were motivated and challenged, they flourished.
Originally, Payne gave a talk to potential enrollees. But he found there was more interest if students were given a hands-on experience at their first exposure to the program. He also lets current students interact with interested students and allows them to answer any questions in a student-friendly manner.
“Students who are interested in the program come in, they get lab coats on, they get gloves on, and they are then told a story about a case and have to perform a few experiments to try to determine what is wrong with a patient. They actually do things,” Payne explained.
Multiple Career Paths in Clinical Laboratories upon Graduation
One advantage to completing the two-year WEMOCO program is that students can explore all the different careers in clinical laboratory medicine and are offered opportunities to work in medical laboratory situations. Phlebotomy students perform 40 hours of work in a blood lab with a goal of performing 50 successful sticks, although many students perform more than that.
“I have students who are under the age of 18 drawing blood on real patients with real samples with these companies’ trainers. It’s like they have been hired,” Payne said. The medical laboratory assistant work is broken up into increments of two hours a day over the course of several months.
Another benefit to the WEMOCO program is that students are prepared for a job right out of high school, which pleases both the students and the parents. Many graduates of the program go on to college to study different fields within the clinical laboratory profession.
Attracting Young Students to the Clinical Laboratory Profession
Payne believes it is important to get young kids interested in the medical laboratory profession in the lower grade levels. His suggestions for stoking that level of interest include:
Developing programs that are age-appropriate but contain medical laboratory concepts.
Outreach programs where clinicians talk to students in the lower grades to spark interest.
Outreach programs where kids can perform simple experiments like staining onions and seeing results.
Telling stories and explaining the roles labs play in helping patients.
Holding field trips where students visit local clinical laboratories and observe medical laboratory professionals.
Opportunities for students to shadow medical laboratory technicians so the kids can imagine themselves in the profession.
Participating in local activity day/career day events.
He also believes that clinical laboratory professionals should promote their field at every opportunity.
“The biggest thing is actively advocating for the profession. Any chance I get, I’m going out and trying to talk to anyone about the clinical laboratory. Try to have some statistics in your back pocket or other things that can be a good talking point and make a powerful statement to people,” Payne suggested.
Determining unique ways to garner interest in the medical laboratory profession is a crucial step in mitigating staffing shortages. Clinical laboratory leaders may want to participate in community outreach programs and serve as advocates for their profession.
Additionally, the device also could help reduce antibiotic-resistant infections and other HAIs and HACs, though this result was not part of the study
Research findings indicate how a new system-in-a-box device that phlebotomists and clinical laboratories would use when drawing blood could reduce contamination of blood cultures and lower patients’ use of antibiotics. In a study involving 1,800 blood cultures done on 904 patients at the University of Nebraska Medical Center (UNMC), use of the device was attributed to an 88% reduction in the blood culture contamination rate.
According to a press release by researchers at UNMC who studied the device, “With traditional blood draws, about 30% to 40% of patients with contaminated blood cultures are prescribed antibiotics unnecessarily. This contributes to antibiotic resistance and undermines nationwide efforts to improve antimicrobial stewardship.” The researchers reported their findings in an article published in the Oxford Academic journal Clinical Infectious Diseases (CID).
Blood Culture Contamination Harms Patients and Increases Cost of Care
The UNMC researchers noted that, during a blood draw, a significant percentage of blood cultures become contaminated when skin fragments containing bacteria are dislodged and mix with the patient’s blood. For the thousands of patients each day who have their blood drawn, contaminated blood cultures, which lead to false positive results for sepsis, often result in unnecessary antibiotic treatment. This in turn can lead to serious and deadly antibiotic-resistant infections with various multi-drug-resistant organisms such as Clostridium difficile infection (C. diff), as well as, other hospital-acquired infections and conditions (HAIs & HACs) due to unnecessary extended length of stay, according to Mark Rupp, MD, Professor, Department of Internal Medicine, Section of Infectious Diseases, and Medical Director, Department of Healthcare Epidemiology-Infection Control at UNMC.
In the CID article, Rupp and colleagues reported on a prospective, controlled trial conducted in the emergency department (ED) at UNMC’s partner hospital Nebraska Medicine. Results of the trial showed that the SteriPath ISDD diverts and sequesters the first 1.5 to 2 mL portion of blood. The researchers presumed that these initial drops of blood would contain the contaminating skin cells and microbes.
SteriPath is a self-contained, preassembled, sterile blood collection system. It provides proprietary vein-to-bottle technology that significantly reduces blood culture contamination, according to Magnolia Medical Technologies. This could be useful for helping phlebotomists and clinical laboratories improve the quality of specimens collected for use in blood culture testing. Click on the image above to view videos on the SteriPath ISDD. (Photo copyright: Magnolia Medical Technologies.)
The researchers tested the SteriPath ISDD during standard phlebotomy procedures in patients requiring blood cultures. After drawing 1,808 blood cultures from 904 study subjects, the researchers concluded that the ISDD significantly reduced blood culture contamination compared with standard phlebotomy procedures. The blood culture contamination among phlebotomists who used the ISDD decreased by nearly 90%, compared to phlebotomy procedures conducted by nurses who did not use the ISDD.
“We were able to decrease the false positive rate significantly through use of this device—from 1.78% down to 0.2%, which represents an 88% reduction,” Rupp noted in the UNMC press release. “The 1.78% baseline rate of contamination may seem small, but we should strive to decrease adverse events to the lowest possible level, because of the impact to the patient and the burden to our healthcare system.
“The device is innovative in that it diverts the first couple of milliliters of blood into the sequestration chamber,” Rupp explained. “That’s where we think the contaminants are. The remaining blood being drawn is then diverted into the sterile pathway into the blood culture vial, thereby preventing the contamination.”
Billions of Healthcare Dollars Could Be Saved with SteriPath’s ISDD
During a conference call with reporters, Rupp admitted that cynics might scoff at such a low rate of improvement. “Many of those folks don’t understand that we do tens of millions of blood cultures in this country every year,” he explained. “Every year, we do about 30 million or so blood cultures. That many cultures means a 2% contamination rate equates to somewhere in the neighborhood of about 600,000 contamination events. And 2% is a very respectable level. Usually clinicians are satisfied anywhere below about 3%, which is about 900,000 events each year.”
For about 40% to 50% of patients whose blood is contaminated, physicians will prescribe antibiotics, order another blood test, and require patients to stay several days in the hospital, he added. “All of this results in thousands of extra dollars being spent,” he declared. If each blood contamination case costs about $4,000, then reducing such contamination in potentially 600,000 cases each year could save more than $1 billion healthcare dollars.
According to the researchers, costs associated with blood culture contamination ranged from $1,000 per patient in 1998 to $8,700 per patient in 2009. “If a midpoint cost estimate of $4,850 is used, and the added cost of the device is not taken into account, it equates to a cost avoidance of $1.8 million per year at our institution alone,” Rupp stated. “If the low rate of contamination that we observed in the study, 0.22%, was applied to all blood cultures throughout the country, billions of dollars of excess costs could be avoided.”
This clinical study offers strong evidence that the SteriPath ISDD might prove to be a useful tool that clinical laboratories could use to help prevent unnecessary exposure to antibiotics and hospital stays, lower healthcare costs, and improve patient test outcomes. If the UNMC clinical study outcomes are replicated in future studies, then it is a technology and a solution that has the potential to be adopted by phlebotomists in medical laboratories and hospitals.
Agreements to open PSCs in the nation’s largest retail grocery and pharmacy chain stores shows a willingness by clinical laboratories to attract customers through convenience
Greater use of retail stores as the location for patient services centers (PSCs) may be an important new trend for the clinical laboratory industry. That’s because, historically, medical laboratories placed most of their patient service centers in hospital campuses or near medical office buildings.
However, in recent months, both of the nation’s billion-dollar lab companies signed deals with national retailers to put patient service centers in their stores. Dark Daily believes that the motivation for a lab company to put a PSC into a grocery store or retail pharmacy is to make it easier and more convenient for a patient to get their specimen collected at a location that is closer to their home or office. In other words, it is faster for the patient to get to their nearest grocery store for a blood draw than to travel to the hospital campus in their community.
Various news reports indicate that Quest Diagnostics (Quest) may be more active than Laboratory Corporation of America (LabCorp) in opening PSCs in grocery stores and retail pharmacies. Over the last four months, Quest has announced plans to open patient services centers with several retailers, particularly in the states of Texas and Florida. Similarly, in the past four weeks, LabCorp disclosed an agreement with Walgreens Boots Alliance (Walgreens).
Ground zero for this current interest in putting PSCs into retail stories is Phoenix, Arizona. In 2014, to serve its direct-to-consumer lab testing business model, Theranos had PSCs in about 40 Walgreen’s pharmacies. Pathologists and clinical laboratories will recall that in November, 2015, Sonora Quest Laboratories of Phoenix opened a patient service center (PSC) in a Scottsdale, Ariz., supermarket owned by Safeway. It was the first PSC Sonora Quest had opened in collaboration with a grocery store chain, but it was not the last. Less than a year later, Sonora Quest and Safeway expanded their operations by opening additional PSCs in stores throughout the Grand Canyon State.
At the same time Sonora Quest was stepping into the retail blood-drawing business, Theranos of Palo Alto, Calif., was exiting it after opening 40 PSCs in Walgreens pharmacies, most of them in Arizona. However, before leaving the lab-testing business altogether, the embattled company put a lot of effort into educating consumers about the benefits of purchasing lab tests without a physician’s order. Theranos had even supported a bill (HB2645) the Arizona State Legislature passed that allowed patients to order tests without a physician’s requisition.
Now, in 2017, Quest Diagnostics (NYSE:DGX) appears interested in following a similar strategy as Theranos and Sonora Quest by developing Quest-branded PSCs in retail chain stores. On its website, Quest states that in the past several years it has opened 106 PSCs in Albertsons, Randalls, Safeway, Tom Thumb, and Vons retail stores in nine states.
This Quest patient service center operates within a Safeway store location. (Photo copyright: Quest Diagnostics.)
In June 2017, Quest announced it would open 10 additional PSCs in Tom Thumb retail stores in North Texas by the end of the month. Thom Thumb is a division of Albertsons, a food and drug retailer with stores nationwide. In the same announcement, Quest said it plans to open PSCs in 200 Albertson’s-owned stores nationwide by the end of the year.
Give Blood Then Shop
Also in June, Quest and Walmart (NYSE:WMT) announced a deal in which the two companies would open co-branded PSCs in 15 Walmart stores in Florida and Texas by the end of 2017.
In these locations, Quest encourages patients to have their blood drawn and then shop. Such locations can accommodate collecting specimens for routine blood work, such as total cholesterol and white blood cell count, as well as complex gene-based and molecular testing. Even patients with such chronic conditions as cancer, diabetes, and hepatitis, are encouraged to use these PSCs, the lab-testing company stated in the announcement.
Not to be outdone, LabCorp also announced a deal with Walgreens in June. In Forbes, Bruce Japsen reported that Walgreens (NASDAQ:WBA) announced it would collaborate with LabCorp (NYSE:LH) to develop and operate PSCs in Walgreens drugstores in Colorado, Illinois, and North Carolina.
The deal is the first for Walgreens since its troubled relationship with Theranos ended last year. Walgreens’ collaboration with LabCorp will initially begin this summer with five patient service centers in Denver and one in Morrisville, N.C. A seventh location in Deerfield, Ill., will open by the end of the year. Financial terms of the partnership were not disclosed.
Lessons Clinical Laboratories Learned with PSCs in Retail Stores
For Quest, the speed with which it is opening new PSCs is significant, because it seems to have taken lessons that Theranos and Sonora Quest learned earlier in Ariz. and applied them to markets nationwide. It’s worth noting that Safeway and Albertsons were already two of the largest retail grocery chains in the nation before they merged in 2015.
So, while Sonora Quest was working with Safeway, its parent company, Quest, was working with Albertsons.
One other point that is significant about Quest’s efforts is that not many other clinical laboratories have a presence in retail stores. It’s unknown just how much specimen volume these retail operations generate for Quest, one of the largest clinical lab companies in America. And, it is unknown if these PSCs in retail settings are breaking even or making a profit.
One result, however, is clear. That Quest is being so aggressive in opening PSCs testifies to the company’s level of interest in serving consumers directly. In other words, these PSCs are not primarily a direct-to-consumer play, but are aimed at building market share by adding regular lab testing done for patients. In this way, the direct-to-consumer business that Quest generates is a bonus.
The deals by Quest and LabCorp also imply that both clinical laboratory companies are willing to bet on the fact that consumers may prefer the convenience of using PSCs located in retail stores they currently frequent, rather than going to patient service centers in hospitals and sitting in a waiting rooms.
In just eight months, Iggbo claims to have 4,000 phlebotomists participating and is now operating in 18 states
Even as Uber and Lyft are bringing a new business model to the taxicab business, a group of entrepreneurs in Virginia want to do the same thing to the phlebotomy services offered by clinical laboratories. Since launching this service in January, the new phlebotomy company operates in 18 states.
The company is called Iggbo. It describes itself as an on-demand anytime/anywhere blood draw service and hopes to streamline the way blood samples move from patients to medical laboratories as the start-up looks to revolutionize phlebotomy the way Uber disrupted taxi service.
Based in Richmond, VA, Iggbo is introducing the sharing economy to the laboratory test collection process, a move that could benefit independent clinical laboratories and pathology groups that join Iggbo’s growing network of labs and independent phlebotomists. (more…)