Report’s authors claim the US needs to be testing 20-million people per day in order to achieve ‘full pandemic resilience’ by August
Medical laboratory scientists and clinical laboratory leaders know that the US’ inability to provide widespread diagnostic testing to detect SARS-CoV-2—the novel coronavirus that causes the COVID-19 illness—in the early stages of the outbreak was a major public health failure. Now a Harvard University report argues the US will need to deliver five million tests per day by early June—more than the total number of people tested nationwide to date—to safely begin reopening the economy.
“We need to deliver five million tests per day by early June to deliver a safe social reopening,” the report’s authors state. “This number will need to increase over time (ideally by late July) to 20 million a day to fully remobilize the economy. We acknowledge that even this number may not be high enough to protect public health. In that considerably less likely eventuality, we will need to scale-up testing much further. By the time we know if we need to do that, we should be in a better position to know how to do it. In any situation, achieving these numbers depends on testing innovation.”
The report is the work of a diverse group of experts in economics, public health, technology, and ethics, from major universities and big technology companies (Apple, Microsoft) with support from The Rockefeller Foundation.
Under Harvard’s Roadmap plan, massive-scale testing would involve rapid development of:
Streamlined sample collection (for example) involving saliva samples (spit kits) rather than deep nasal swabs that have to be taken by healthcare workers;
Transportation logistics systems able to rapidly collect and distribute samples for testing;
Mega-testing labs, each able to perform in the range of one million tests per day, with automation, streamlined methods, and tightly managed supply chains;
Information systems to rapidly transmit test results; and
Technology necessary to certify testing status.
“The unique value of this approach is that it will prevent cycles of opening up and shutting down,” Anne-Marie Slaughter, CEO of New America, said in the statement. “It allows us to mobilize and re-open progressively the parts of the economy that have been shut down, protect our frontline workers, and contain the virus to levels where it can be effectively managed and treated until we can find a vaccine.”
Is Expanding Clinical Laboratory Testing Even Possible?
But is such a plan realistic? Perhaps not. When questioned by NBC News about the timeline for “broad-based coronavirus testing” that was suggested as part of the Trump Administration’s three-phase plan to reopen the states, former FDA Commissioner Scott Gottlieb, MD, said, “We’re not going to be there. We’re not going to be there in May, we’re not going to be there in June, hopefully, we’ll be there by September.”
In recent weeks, however, US testing capabilities have improved. Quest Diagnostics, which had come under fire for its testing backlog in California, announced it now has the capacity to perform 50,000 diagnostic COVID-19 tests per day or 350,000 tests per week with less than a two-day turnaround for results. “Our test capacity outpaces demand and we have not experienced a test backlog for about a week,” Quest said in a statement.
CDC ‘Modifies’ Its Guidelines for Declaring a Person ‘Recovered’ from COVID-19
Furthermore, the CDC modified its guidance on the medical and testing criteria that must be met for a person to be considered recovered from COVID-19, which initially required two negative test results before a patient could be declared “confirmed recovered” from the virus. The CDC added a non-testing strategy that allowed states to begin counting “discharged” patients who did not have easy access to additional testing as recovered from the virus.
Under the non-test-based strategy, a person may be considered recovered if:
At least three days (72 hours) have passed since recovery, defined as resolution of fever without the use of fever-reducing medications;
Improvement in respiratory symptoms (e.g., cough, shortness of breath); and,
At least seven days have passed since symptoms first appeared.
For now, however, the focus will likely remain on testing for those who are infected, rather than for finding those who have recovered. As of May 30, the COVID Tracking Project reported that only 16,495,443 million tests had been conducted in the US, with 1,759,693 of those test showing positive for COVID-19. That’s closing in on the 10% “test-positivity rate” recommended by the WHO for controlling a pandemic, but it’s not quite there.
As testing for COVID-19 grows exponentially, clinical laboratories should anticipate playing an increasingly important role in the nation’s response to the COVID-19 pandemic.
First used to track cryptocurrencies such as Bitcoin, blockchain is finding its way into tracking and quality control systems in healthcare, including clinical laboratories and big pharma
Four companies were selected by the US Food and Drug Administration (FDA) to participate in a pilot program that will utilize blockchain technology to create a real-time monitoring network for pharmaceutical products. The companies selected by the FDA include: IBM (NYSE:IBM), Merck (NYSE:MRK), Walmart (NYSE:WMT), and KPMG, an international accounting firm. Each company will bring its own distinct expertise to the venture.
This important project to utilize blockchain technologies in
the pharmaceutical distribution chain is another example of prominent
healthcare organizations looking to benefit from blockchain technology.
Clinical laboratories and health insurers also are collaborating on blockchain projects. A recent intelligence briefing from The Dark Report, the sister publication of Dark Daily, describes collaborations between multiple health insurers and Quest Diagnostics to improve their provider directories using blockchain. (See, “Four Insurers, Quest Developing Blockchain,” July 1, 2019.)
Improving Traceability and Security in Healthcare
Blockchain continues to intrigue federal officials, health network administrators, and health information technology (HIT) developers looking for ways to accurately and efficiently track inventory, improve information access and retrieval, and increase the accuracy of collected and stored patient data.
In the FDA’s February press release announcing the pilot program, Scott Gottlieb, MD, who resigned as the FDA’s Commissioner in April, stated, “We’re invested in exploring new ways to improve traceability, in some cases using the same technologies that can enhance drug supply chain security, like the use of blockchain.”
Congress created this latest program, which is part of the federal US Drug Supply Chain Security Act (DSCSA) enacted in 2013, to identify and track certain prescription medications as they are disseminated nationwide. However, once fully tested, similar blockchain systems could be employed in all aspects of healthcare, including clinical laboratories, where critical supplies, fragile specimens, timing, and quality control are all present.
The FDA hopes the electronic framework being tested during
the pilot will help protect consumers from counterfeit, stolen, contaminated, or
harmful drugs, as well as:
reduce the time needed to track and trace
product inventory;
enable timely retrieval of accurate distribution
information;
increase the accuracy of data shared among the
network members; and
help maintain the integrity of products in the
distribution chain, including ensuring products are stored at the correct
temperature.
Companies in the FDA’s Blockchain Pilot
IBM, a leading blockchain provider, will serve as the
technology partner on the project. The tech giant has implemented and provided
blockchain applications to clients for years. Its cloud-based platform provides
customers with end-to-end capabilities that enable them to develop, maintain,
and secure their networks.
“Blockchain could provide an important new approach to further improving trust in the biopharmaceutical supply chain,” said Mark Treshock, Global Blockchain Solutions Leader for Healthcare and Life Sciences at IBM, in a news release. “We believe this is an ideal use for the technology because it can not only provide an audit trail that tracks drugs within the supply chain; it can track who has shared data and with whom, without revealing the data itself. Blockchain has the potential to transform how pharmaceutical data is controlled, managed, shared and acted upon throughout the lifetime history of a drug.”
Merck, known as MSD outside of the US and Canada, is
a global pharmaceutical company that researches and develops medications and
vaccines for both human and animal diseases. Merck delivers health solutions to
customers in more than 140 countries across the globe.
“Our supply chain strategy, planning and logistics are built around the customers and patients we serve,” said Craig Kennedy, Senior Vice President, Global Supply Chain Management at Merck, in the IBM news release. “Reliable and verifiable supply helps improve confidence among all the stakeholders—especially patients—while also strengthening the foundation of our business.”
Kennedy added that transparency is one of Merck’s primary
goals in participating in this blockchain project. “If you evaluate today’s
pharmaceutical supply chain system in the US, it’s really a series of handoffs
that are opaque to each other and owned by an individual party,” he said,
adding, “There is no transparency that provides end-to-end capabilities. This
hampers the ability for tracking and tracing within the supply chain.”
Walmart, the world’s largest company by revenue, will
be distributing drugs through their pharmacies and care clinics for the
project. Walmart has successfully experimented using blockchain technology with
other products. It hopes this new collaboration will benefit their customers,
as well.
“With successful blockchain pilots in pork, mangoes, and leafy greens that provide enhanced traceability, we are looking forward to the same success and transparency in the biopharmaceutical supply chain,” said Karim Bennis, Vice President of Strategic Planning of Health and Wellness at Walmart, in the IBM news release. “We believe we have to go further than offering great products that help our customers live better at everyday low prices. Our customers also need to know they can trust us to help ensure products are safe. This pilot, and US Drug Supply Chain Security Act requirements, will help us do just that.”
KPMG, a multi-national professional services network
based in the Netherlands, will be providing knowledge regarding compliance
issues to the venture.
“Blockchain’s innate ability within a private, permissioned
network to provide an ‘immutable record’ makes it a logical tool to deploy to
help address DSCSA compliance requirements,” said Arun Ghosh, US Blockchain
Leader at KPMG, in the IBM news release. “The ability to leverage existing
cloud infrastructure is making enterprise blockchain increasingly affordable
and adaptable, helping drug manufacturers, distributors, and dispensers meet
their patient safety and supply chain integrity goals.”
The FDA’s blockchain project is scheduled to be completed in
the fourth quarter of 2019, with the end results being published in a DSCSA
report. The participating organizations will evaluate the need for and plan any
future steps at that time.
Blockchain is a new and relatively untested technology
within the healthcare industry. However, projects like those supported by the
FDA may bring this technology to the forefront for healthcare organizations,
including clinical laboratories and pathology groups. Once proven, blockchain
technology could have significant benefits for patient data accuracy and
security.
Softened FDA regulation of both clinical-decision-support and patient-decision-support software applications could present opportunities for clinical laboratory developers of such tools
Physician decision-support software utilizes medical laboratory test data as a significant part of a full dataset used to guide caregivers. Thus, if the FDA makes it easier for developers to get regulatory clearance for these types of products, that could positively impact medical labs’ ability to service their client physicians.
Additionally, clinical pathologists have unique training in diagnosing diseases and understanding the capabilities and limitations of medical laboratory tests in supporting how physicians diagnose disease and make treatment decisions. Thus, actions by the FDA to make it easier for developers of software algorithms that can incorporate clinical laboratory data and anatomic pathology images with the goal of improving diagnoses, decisions to treat, and monitoring of patients have the potential to bring great benefit to the nation’s medical laboratories.
FDA Clarifies Role in Regulating CDS/PDS Applications
The new guidelines clarified items specified in the 21st Century Cures Act, which was enacted by Congress in December of 2016. This Act authorized $6.3 billion in funding for the discovery, development, and delivery of advanced, state-of-the art medical cures.
“Today, we’re announcing three new guidances—two draft and one final—that address, in part, important provisions of the 21st Century Cures Act, that offer additional clarity about where the FDA sees its role in digital health, and importantly, where we don’t see a need for FDA involvement,” FDA commissioner Scott Gottlieb, MD, Commissioner of Food and Drugs, noted in a statement. “We’ve taken the instructions Congress gave us under the Cures Act and [we] are building on these provisions to make sure that we’re adopting the full spirit of the goals we were entrusted with by Congress.”
Helping Doctors’ Decision-Making
The first guideline concerns clinical decision support systems that are designed to help doctors make data-driven decisions about patient care. The new guidelines make it easier for software developers to get regulatory clearance, which, the FDA hopes, will spark innovation and makes regulation more efficient.
“CDS has many uses, including helping providers, and ultimately patients, identify the most appropriate treatment plan for their disease or condition,” Gottlieb said in the FDA’s statement. “For example, such software can include programs that compare patient-specific signs, symptoms, or results with available clinical guidelines to recommend diagnostic tests, investigations or therapy.
“This type of technology has the potential to enable providers and patients to fully leverage digital tools to improve decision making,” Gottlieb continued. “We want to encourage developers to create, adapt, and expand the functionalities of their software to aid providers in diagnosing and treating old and new medical maladies.”
Identifying Digital Health Applications That Receive/Don’t Receive FDA Oversight
The second guideline discusses and delineates which digital health applications are considered low risk and, thus, will not fall under FDA regulations.
Products that are not intended to be used for the diagnosis, cure, mitigation, prevention, or treatment of a condition will not be regulated by the FDA. These technologies are not considered medical devices and may include gadgets such as weight management and mindfulness tools. They can provide value to consumers and the healthcare industry while posing a low risk to patients.
“Similarly, the CDS draft guidance also proposes to not enforce regulatory requirements for lower-risk decision support software that’s intended to be used by patients or caregivers—known as patient-decision-support software (PDS)—when such software allows a patient or a caregiver to independently review the basis of the treatment recommendation,” Gottlieb noted in the statement.
Scott Gottlieb, MD (above), FDA Commissioner of Food and Drugs, noted in a statement, “We believe our proposals for regulating CDS and PDS not only fulfill the provisions of the Cures Act, but also strike the right balance between ensuring patient safety and promoting innovation. Clinical laboratories may find opportunities to work with CDS/PDS developers and support their client physicians. (Photo copyright: FDA.)
However, products that are intended to be used for the diagnosis, cure, mitigation, prevention, or treatment of a condition are considered medical devices and will fall under FDA regulations.
“The FDA will continue to enforce oversight of software programs that are intended to process or analyze medical images, signals from in vitro diagnostic devices, or patterns acquired from a processor like an electrocardiogram that use analytical functionalities to make treatment recommendations, as these remain medical devices under the Cures Act,” noted Gottlieb.
Items such as mobile apps that are utilized to maintain and encourage a healthy lifestyle are not deemed to be medical devices and will fall outside FDA regulations. The guidelines also defined that Office of the National Coordinator for Health Information Technology (ONC)-certified electronic health record (EHR) systems are not medical devices and, thus, will not be regulated by the FDA.
Software-as-a-Medical Device Gets FDA Oversight
The third guidance document deals with the assessment of the safety, performance, and effectiveness of Software as a Medical Device (SaMD).
“This final guidance provides globally recognized principles for analyzing and assessing SaMD, based on the overall risk of the product. The agency’s adoption of these principles provides us with an initial framework when further developing our own specific regulatory approaches and expectations for regulatory oversight and is another important piece in our overarching policy framework for digital health,” Gottlieb noted in the statement.
SaMD is defined by the International Medical Device Regulators Forum (IMDRF) as “software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device.”
Gottlieb noted that the three important guidance documents being issued would continue to expand the FDA’s efforts to encourage innovation in the ever-changing field of digital health. “Our aim is to provide more clarity on, and innovative changes to, our risk-based approach to digital health products, so that innovators know where they stand relative to the FDA’s regulatory framework. Our interpretation of the Cures Act is creating a bright line to define those areas where we do not require premarket review,” he concluded.
What remains to be seen is how the new FDA regulations will impact clinical laboratories and anatomic pathology groups. With the expanding interest in artificial intelligence (AI) and self-learning software systems, healthcare futurists are predicting a rosy future for informatics products that incorporate these technologies. Hopefully, with these new guidelines in place, innovative clinical laboratories will have the opportunity to develop new digital products for their clients.
Financial and clinical fortunes may soon shift for many medical laboratory organizations
By every measure, the clinical laboratory industry is entering a high-stakes period during the next 24 months. Powerful trends are reducing lab budgets and payers are cutting the prices paid for medical laboratory testing. The question on everyone’s mind is “will it get better or worse in the months ahead?”
This question will be asked plenty of times to speakers at the nation’s largest gathering of clinical lab executives and pathology business leaders. On April 30-May1, the upcoming 18th Annual Executive War College on Laboratory and Pathology Management will take place in New Orleans, Louisiana. A record crowd has already registered to attend. (more…)