News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

10-Minute Blood Test Uses Digital Images and AI to Determine Sepsis Risk for Emergency Room Patients

With FDA clearance already approved, hospital infection control teams and their clinical laboratories may have another diagnostic tool for diagnosing blood infections

Controlling sepsis in hospitals continues to be a major concern in nations around the world, including in the United States. Now, a new 10-minute clinical laboratory blood test that uses artificial intelligence (AI) and digital images to spot biomarkers of the potentially fatal condition may soon be available for use in hospitals. The test, which was approved to be marketed in the US in 2022 by the federal Food and Drug Administration (FDA), may be “one of the most important breakthroughs in modern medical history,” according to US researchers, Good News Network (GNN) reported.

Called IntelliSep, the test was created through a partnership between San Francisco-based medical diagnostics company Cytovale and the Louisiana State University Health Sciences Center (LSUHSC) in Baton Rouge. Hollis O’Neal, MD, Critical Care Physician at LSUHSC and Medical Director of Research at Our Lady of the Lake Regional Medical Center, was the national principal investigator that resulted in the novel test being cleared by the FDA.

“Early detection of sepsis is an invaluable capability for healthcare professionals. Quickly identifying sepsis is critical to saving lives, but until now, we’ve lacked a reliable tool to either recognize the condition or explore alternate diagnoses,” said O’Neal in an LSU press release.

“IntelliSep is truly a game changer,” said Hollis O’Neal, MD (above), Associate Professor of Medicine at Louisiana State University Health Sciences Center in Baton Rouge. “The test provides hospital staff with information needed to identify and treat septic patients efficiently and reduce the financial and health burdens of overtreatment for hospitals and patients.” Clinical laboratories may have a new blood test for sepsis by the end of the year. (Photo copyright: Louisiana State University.)

How IntelliSep Works

The IntelliSep test analyzes blood samples extracted from emergency room patients who present with sepsis symptoms by squeezing white blood cells through a tiny tube to determine how the cells react and if they change shape. White blood cells in patients with sepsis are softer and spongier and their shape compresses and elongates, increasing the likelihood of developing sepsis.

Images are taken of the cells using an ultra-high-speed camera that can capture up to 500,000 frames per second. The images are the analyzed by an AI-powered computer which calculates the total number of elongated white blood cells to determine if sepsis is present.

IntelliSep then separates patients into three bands of risk for developing sepsis:

  • Band 1 (low)
  • Band 2 (medium)
  • Band 3 (high)

Results of the test are available to emergency room personnel in less than 10 minutes.

“Sepsis is notorious as the ‘silent killer’ because it is so easily missed early on, when a patient’s symptoms can often be mistaken for other less serious illnesses,” Michael Atar, PhD, DDS, Associate Professor, Pediatric Dentistry at New York University told Good News Network. “Rapid diagnosis and treatment is crucial to a good outcome, but there has never been a single, reliable diagnostic test available to doctors, costing precious time and people’s lives.”

Atar is a lead medical technology investor and an advisor to Cytovale. 

‘Holy Grail’ of Sepsis Diagnosis

To complete the IntelliSep study, researchers enrolled 1,002 ER patients who presented with signs of sepsis. IntelliSep correctly identified patients who did not have sepsis with an accuracy rate of 97.5%. The technology showed an accuracy rate of 55% for positive sepsis results. Researchers also used IntelliSep to quickly diagnose and assess the severity of a sepsis infection.  

There were no sepsis deaths reported in patients with low-risk scores. This indicates the test could help physicians rule out sepsis and seek other diagnoses for those patients.

“Cytovale’s IntelliSep device is, by any objective measure, the ‘holy grail’ that the medical community has been so desperate to find,” Atar told Good News Network. “The technology behind it is genuinely groundbreaking and it has the real-world, tried-and-tested potential to save millions of lives, year on year, across the planet.”

The technology is currently being used in a few hospitals in Louisiana and the inventors hope to have it available in at least 10 other hospitals by the end of the year.

Our Lady of the Lake Regional Medical Center, a not-for-profit Catholic healthcare ministry located in Baton Rouge, was one of the first hospitals to implement IntelliSep.

“Cytovale’s innovative technology will help drastically decrease the number of sepsis-related deaths in hospital settings, and we are honored that, since day one, we have been a part of the research that led to this technology,” said Chuck Spicer, President of Our Lady of the Lake Health in a news release.

Saint Francis Medical Center in Monroe, La., announced on September 3 that it has started using the IntelliSep test in its emergency rooms and staff are impressed by the impact on hospital efficiency. 

“If it turns out negative then you don’t have to treat as many patients as you did before, which runs up costs, hospital bills and causes people to be in the hospital for longer periods of time,” said pulmonary disease physician Thomas Gullatt, MD, President, St. Francis Health, told KNOE News.

Patient Expectations for Treatment

Sepsis, also known as septicemia or blood poisoning, is a serious medical condition that occurs when the body improperly reacts to an infection or injury. The dangerous reaction causes extensive inflammation throughout the body and, if not treated early, can lead to organ failure, tissue damage, and even death. 

The Centers for Disease Control and Prevention (CDC) reports at least 1.7 million adults develop sepsis annually in the US and at least 350,000 die as a result of the condition. It also states sepsis is one of the main reasons people are readmitted to hospitals.

Clinical laboratories should be aware of developments in the use of this new diagnostic assay and how it is aiding the diagnosis, antibiotic selection, and monitoring of patients with this deadly infection. Patients often learn about new technologies and come to their hospital or provider expecting to be treated with these innovations.

—JP Schlingman

Related Information:

Blood Test That Detects Sepsis in 10 Minutes by Squeezing Blood Cells—Hailed as ‘The Holy Grail’

St. Francis Medical Center Introduces Life-saving Sepsis Test

Ask a Specialist: Sepsis

Cytovale’s Sepsis Diagnostic Test Demonstrates 97.5% NPV in Latest Study

LSU Health Sciences Physician Lead Investigator on Groundbreaking Sepsis Test

FDA Clears Cytovale’s IntelliSep Sepsis Test, First in a New Class of Emergency Department-Focused Diagnostic Tools

New Test for Sepsis Could Save Lives in Emergency Departments, Study Suggests

Cytovale’s Rapid Sepsis Diagnostic Test Demonstrates Improved Patient Care and Cost Savings in Hospital Application

Cleveland Clinic: Sepsis

WHO: Sepsis

National Institute of General Medical Sciences: Sepsis

Sepsis Is the Third Leading Cause of Death in U.S. hospitals. But Quick Action Can Save Lives

Cellular Host Response Sepsis Test for Risk Stratification of Patients in the Emergency Department: A Pooled Analysis

FDA Grants Marketing Authorization to First Ever AI-Powered SaMD Diagnostic Tool for Sepsis That Shares Patient’s Risk within 24 Hours and Works with EHRs

How Real-Time Analytics Improved Lab Performance and Helped Reduce Readmissions Due to Fewer False Positives in Sepsis Testing

New Federal Rules on Sepsis Treatment Could Cost Hospitals Millions of Dollars in Medicare Reimbursements

New Federal Rules on Sepsis Treatment Could Cost Hospitals Millions of Dollars in Medicare Reimbursements

Some hospital organizations are pushing back, stating that the new regulations are ‘too rigid’ and interfere with doctors’ treatment of patients

In August, the Biden administration finalized provisions for hospitals to meet specific treatment metrics for all patients with suspected sepsis. Hospitals that fail to meet these requirements risk the potential loss of millions of dollars in Medicare reimbursements annually. This new federal rule did not go over well with some in the hospital industry.

Sepsis kills about 350,000 people every year. One in three people who contract the deadly blood infection in hospitals die, according to the Centers for Disease Control and Prevention (CDC). Thus, the federal government has once again implemented a final rule that requires hospitals, clinical laboratories, and medical providers to take immediate actions to diagnose and treat sepsis patients.

The effort has elicited pushback from several healthcare organizations that say the measure is “too rigid” and “does not allow clinicians flexibility to determine how recommendations should apply to their specific patients,” according to Becker’s Hospital Review.

The quality measures are known as the Severe Sepsis/Septic Shock Early Management Bundle (SEP-1). The regulation compels doctors and clinical laboratories to:

  • Perform blood tests within a specific period of time to look for biomarkers in patients that may indicate sepsis, and to
  • Administer antibiotics within three hours after a possible case is identified.

It also mandates that certain other tests are performed, and intravenous fluids administered, to prevent blood pressure from dipping to dangerously low levels. 

“These are core things that everyone should do every time they see a septic patient,” said Steven Simpson, MD, Professor of medicine at the University of Kansas told Fierce Healthcare. Simpson is also the chairman of the Sepsis Alliance, an advocacy group that works to battle sepsis. 

Simpson believes there is enough evidence to prove that the SEP-1 guidelines result in improved patient care and outcomes and should be enforced.

“It is quite clear that this works better than what was present before, which was nothing,” he said. “If the current sepsis mortality rate could be cut by even 5%, we could save a lot of lives. Before, even if you were reporting 0% compliance, you didn’t lose your money. Now you actually have to do it,” Simpson noted.

Chanu Rhee, MD

“We are encouraged by the increased attention to sepsis and support CMS’ creation of a sepsis mortality measure that will encourage hospitals to pay more attention to the full breadth of sepsis care,” Chanu Rhee, MD (above), Infectious Disease/Critical Care Physician and Associate Hospital Epidemiologist at Brigham and Women’s Hospital told Healthcare Finance. The new rule, however, requires doctors and medical laboratories to conduct tests and administer antibiotic treatment sooner than many healthcare providers deem wise. (Photo copyright: Brigham and Women’s Hospital.)

Healthcare Organizations Pushback against Final Rule

The recent final rule builds on previous federal efforts to combat sepsis. In 2015, the Centers for Medicare and Medicaid Services (CMS) first began attempting to reduce sepsis deaths with the implementation of SEP-1. That final rule updated the Medicare payment policies and rates under the Inpatient Prospective Payment System (IPPS) and Long-Term Care Hospitals Prospective Payment System (LTCH PPS).

Even then the rule elicited a response from the American Hospital Association (AHA), the Infectious Disease Society of America (IDSA), American College of Emergency Physicians (ACEP), the Society of Critical Care Medicine (SCCM), and the Society of Hospital Medicine (SHM). The organizations were concerned that the measure “encourages the overuse of broad-spectrum antibiotics,” according to a letter the AHA sent to then Acting Administrator of CMS Andrew Slavitt.

“By encouraging the use of broad spectrum antibiotics when more targeted ones will suffice, this measure promotes the overuse of the antibiotics that are our last line of defense against drug-resistant bacteria,” the AHA’s letter states.

In its recent coverage of the healthcare organizations’ pushback to CMS’ final rule, Healthcare Finance News explained, “The SEP-1 measure requires clinicians to provide a bundle of care to all patients with possible sepsis within three hours of recognition. … But the SEP-1 measure doesn’t take into account that many serious conditions present in a similar fashion to sepsis … Pushing clinicians to treat all these patients as if they have sepsis … leads to overuse of broad-spectrum antibiotics, which can be harmful to patients who are not infected, those who are infected with viruses rather than bacteria, and those who could safely be treated with narrower-spectrum antibiotics.”

CMS’ latest rule follows the same evolutionary path as previous federal guidelines. In August 2007, CMS announced that Medicare would no longer pay for additional costs associated with preventable errors, including situations known as Never Events. These are “adverse events that are serious, largely preventable, and of concern to both the public and healthcare providers for the purpose of public accountability,” according to the Leapfrog Group.

In 2014, the CDC suggested that all US hospitals have an antibiotic stewardship program (ASP) to measure and improve how antibiotics are prescribed by clinicians and utilized by patients.

Research Does Not Show Federal Sepsis Programs Work

In a paper published in the Journal of the American Medical Association (JAMA) titled, “The Importance of Shifting Sepsis Quality Measures from Processes to Outcomes,” Chanu Rhee, MD, Infectious Disease/Critical Care Physician and Associate Hospital Epidemiologist at Brigham and Women’s Hospital and Associate Professor of Population Medicine at Harvard Medical School, stressed his concerns about the new regulations.

He points to analysis which showed that though use of broad-spectrum antibiotics increased after the original 2015 SEP-1 regulations were introduced, there has been little change to patient outcomes.  

“Unfortunately, we do not have good evidence that implementation of the sepsis policy has led to an improvement in sepsis mortality rates,” Rhee told Fierce Healthcare.

Rhee believes that the latest regulations are a step in the right direction, but that more needs to be done for sepsis care. “Retiring past measures and refining future ones will help stimulate new innovations in diagnosis and treatment and ultimately improve outcomes for the many patients affected by sepsis,” he told Healthcare Finance.

Sepsis is very difficult to diagnose quickly and accurately. Delaying treatment could result in serious consequences. But clinical laboratory blood tests for blood infections can take up to three days to produce a result. During that time, a patient could be receiving the wrong antibiotic for the infection, which could lead to worse problems.

The new federal regulation is designed to ensure that patients receive the best care possible when dealing with sepsis and to lower mortality rates in those patients. It remains to be seen if it will have the desired effect.  

Jillia Schlingman

Related Information:

Feds Hope to Cut Sepsis Deaths by Hitching Medicare Payments to Treatment Stats

Healthcare Associations Push Back on CMS’ Sepsis Rule, Advocate Tweaks

Value-Based Purchasing (VBP) and SEP-1: What You Should Know

NIGMS: Sepsis Fact Sheet

CDC: What is Sepsis?

CDC: Core Elements of Antibiotic Stewardship

The Importance of Shifting Sepsis Quality Measures from Processes to Outcomes

Association Between Implementation of the Severe Sepsis and Septic Shock Early Management Bundle Performance Measure and Outcomes in Patients with Suspected Sepsis in US Hospitals

Infectious Diseases Society of America Position Paper: Recommended Revisions to the National Severe Sepsis and Septic Shock Early Management Bundle (SEP-1) Sepsis Quality Measure

CMS to Improve Quality of Care during Hospital Inpatient Stays – 2014

CDC Issues New Guidelines to Optimize Hospital Sepsis Programs and Save Lives

Clinical laboratory leaders may be aware that many hospitals still do not have capabilities to make a timely diagnosis of sepsis

Despite the fact that “one in three people who dies in a hospital had sepsis during that hospitalization,” recent data from the Centers for Disease Control and Prevention (CDC) show that many hospitals in the US lack the resources to identify sepsis and begin treatment as soon as possible, CNN reported.

According to the CDC, 1.7 million Americans develop sepsis annually. And of that group, at least 350,000 adults die in hospitals or hospice care centers. Clinical laboratories tasked with performing the plethora of tests needed to diagnose sepsis will agree that it is one of the gravest healthcare dangers patients face.

To address this potentially deadly threat, the CDC developed the “Hospital Sepsis Program Core Elements: 2023” to support the implementation of sepsis protocols at all hospitals, to optimize any existing sepsis programs, and to organize staff and identify resources to lower sepsis rates and raise survivability.

“Modeled after CDC’s Core Elements of Antibiotic Stewardship, which has proven to be an impactful resource to protect patients from the harms caused by unnecessary antibiotic use and to combat antimicrobial resistance, the Sepsis Core Elements were created with the expectation that all hospitals, regardless of size and location, would benefit from this resource,” a CDC press release noted.

Raymund Dantes, MD

“CDC’s Hospital Sepsis Program Core Elements are a guide for structuring sepsis programs that put your healthcare providers in the best position to rapidly identify and provide effective care for all types of patients with sepsis,” said Raymund Dantes, MD (above), Medical Advisor, National Healthcare Safety Network, CDC, and Associate Professor, Emory University School of Medicine, in a CDC press release. Hospital medical laboratories will play a key role in the success of the CDC’s sepsis program. (Photo copyright: Emory School of Medicine.)

Seven Elements to Improve Sepsis Diagnosis

Sepsis can occur when chemicals released into the bloodstream to fight off an infection produce massive inflammation throughout the body. This potentially fatal reaction can cause a deluge of changes within the body that damage multiple organs, leading them to fail.

The CDC designed its hospital sepsis program to improve and monitor the management and outcomes of patients with sepsis. The core elements of the program include seven main points:

  • Hospital Leadership Commitment: Management must dedicate the necessary staff, financial, and information technology resources.
  • Accountability: Appoint a team responsible for program goals and outcomes.
  • Multi-professional Expertise: Make sure key personnel throughout the healthcare system are engaged in the program.
  • Action: Implement structures and processes to improve the identification of the illness and patient outcomes.
  • Tracking: Develop initiatives to measure sepsis epidemiology, management, overall outcomes, and progress towards established goals.
  • Reporting: Provide information on sepsis management and outcomes to relevant partners.
  • Education: Provide healthcare professionals, patients, and family/caregivers with information on sepsis.

“Sepsis is taking too many lives. One in three people who dies in a hospital has sepsis during that hospitalization. Rapid diagnosis and immediate appropriate treatment, including antibiotics, are essential to saving lives, yet the challenges of awareness about and recognition of sepsis are enormous,” said CDC Director Mandy Cohen, MD, in the CDC press release. “That’s why CDC is calling on all US hospitals to have a sepsis program and raise the bar on sepsis care by incorporating these seven core elements.”

Early Diagnosis Presents Challenges

Sepsis care is complex. The condition requires urgent medical intervention to prevent organ damage and death. But the symptoms, which include fever or low temperature, shivering, confusion, breathing difficulties, extreme body pain or discomfort, high heart rate, weak pulse or low blood pressure, and low urine output, can be general and indicative of other illnesses.

The diagnosis of sepsis usually requires the collection of a blood culture specimen that is then incubated until there is enough bacterial growth to identify the specific strains of bacteria in a particular patient. This process can take several days, which can delay the administering of the most effective treatment for the condition. Treatment usually includes antibiotics and intravenous fluids.

A recent CDC survey of 5,221 US hospitals showed that in 2022, only 73% of hospitals reported having a sepsis program, ranging from 53% among hospitals with less than 25 beds to 95% among hospitals with over 500 beds.

That survey, released in the CDC’s August Morbidity and Mortality Weekly Report (MMWR), also discovered that only 55% of all hospitals had personnel with dedicated time to manage and conduct necessary daily activities for a sepsis program. 

Raymund Dantes, MD, Medical Advisor, National Healthcare Safety Network, CDC, and Associate Professor, Emory University School of Medicine, told CNN that as many as 1,400 hospitals have no sepsis program in place at all. Therefore, he added, the CDC’s Hospital Sepsis Program Core Elements documents also include a “getting started guide” to help those hospitals create the needed committees.

“For those hospitals that already have sepsis programs underway and have available resources, we have a lot more details and best practices that we’ve collected from hospitals about how to better improve your sepsis programs,” he said. “The seven elements complement clinical guidelines by describing the leadership, expertise, tracking, education, and other elements that can be implemented in a wide variety of hospitals to improve the quality of sepsis care.” 

Hospital Laboratories Play a Key Role in Reducing Sepsis

According to the CDC, anyone can get an infection and almost any infection can lead to sepsis. However, some populations are more vulnerable to sepsis than others. They include:

  • Older persons
  • Pregnant or recently pregnant women
  • Neonates
  • Hospitalized Patients
  • Patients in Intensive Care Units
  • People with weakened immune systems
  • People with chronic medical conditions

According to the World Health Organization (WHO), there were 48.9 million sepsis cases and 11 million sepsis-related deaths worldwide in 2017. This number accounted for almost 20% of all global deaths. Almost half of all the global sepsis cases occurred in children, resulting in 2.9 million deaths in children under the age of five. 

“Sepsis is complex, often difficult to identify, and takes a tremendous societal toll in the United States,” said Steven Simpson, MD, Professor of Medicine at the University of Kansas and Chair, Board of Directors, Sepsis Alliance, a non-profit organization dedicated to raising awareness and reducing suffering from sepsis, in a press release. “To tackle the number one killer in American hospitals, we need a comprehensive National Action Plan to find cures, get them in the hands of professionals, and educate the public and professionals alike.”

Hospital medical laboratories can help reduce sepsis by finding ways to support their physicians’ diagnoses of this infection that has taken so many lives.

—JP Schlingman

Related Information:

CDC Launches Effort to Bolster Hospital Sepsis Programs

Hospital Sepsis Program Core Elements: 2023

CDC: What is Sepsis?

Sepsis Program Activities in Acute Care Hospitals—National Healthcare Safety Network, United States, 2022

Sepsis Nearly Killed Me. This is What it was Like.

Hospital Sepsis Program Core Elements

CDC Launches New Effort Aimed at Strengthening Survival and Recovery Rates for All Sepsis Patients

Sepsis: The Deadly Disease You Might Not Be Familiar With

Sepsis Alliance Reinforces Call for National Sepsis Action Plan as Awareness of the Term Sepsis Dips to 63%

Sepsis Alliance Calls on Biden-Harris Administration for a National Sepsis Action Plan

Hospitals Worldwide Are Deploying Artificial Intelligence and Predictive Analytics Systems for Early Detection of Sepsis in a Trend That Could Help Clinical Laboratories, Microbiologists

Achieving Faster Sepsis Diagnosis in the Emergency Department: Early Experience with the Monocyte Distribution Width (MDW) Marker and Acceptance by ED and ID Physicians

McMaster University Researchers Develop Bioinformatics ‘Shortcut’ That Speeds Detection and Identification of Pathogens, including Sepsis, SARS-CoV-2, Others

Molecular probes designed to spot minute amounts of pathogens in biological samples may aid clinical laboratories’ speed-to-answer

Driven to find a better way to isolate minute samples of pathogens from among high-volumes of other biological organisms, researchers at Canada’s McMaster University in Hamilton, Ontario, have unveiled a bioinformatics algorithm which they claim shortens time-to-answer and speeds diagnosis of deadly diseases.

Two disease pathogens the researchers specifically targeted in their study are responsible for sepsis and SARS-CoV-2, the coronavirus causing COVID-19. Clinical laboratories would welcome a technology which both shortens time-to-answer and improves diagnostic accuracy, particularly for pathogens such as sepsis and SARS-CoV-2.

Their design of molecular probes that target the genomic sequences of specific pathogens can enable diagnosticians and clinical laboratories to spot extremely small amounts of viral and bacterial pathogens in patients’ biological samples, as well as in the environment and wildlife.

“There are thousands of bacterial pathogens and being able to determine which one is present in a patient’s blood sample could lead to the correct treatment faster when time is very important,” Zachery Dickson, a lead author of the study, told Brighter World. Dickson is a bioinformatics PhD candidate in the Department of Biology at McMaster University. “The probe makes identification much faster, meaning we could potentially save people who might otherwise die,” he added.

Sepsis is a life-threatening response to infection that leads to organ failure, tissue damage, and death in hospitals worldwide. According to Sepsis Alliance, about 30% of people diagnosed with severe sepsis will die without quick and proper treatment. Thus, a “shortcut” to identifying sepsis in its early stages may well save many lives, the McMaster researchers noted.

And COVID-19 has killed millions. Such a tool that identifies sepsis and SARS-CoV-2 in minute biological samples would be a boon to hospital medical laboratories worldwide.

Hendrik Poinar, PhD

“We currently need faster, cheaper, and more succinct ways to detect pathogens in human and environmental samples that democratize the hunt, and this pipeline does exactly that,” Hendrik Poinar, PhD (above), McMaster Professor of Anthropology and a lead author of the study, told Brighter World. Poinar is Director of the McMaster University Ancient DNA Center. Hospital medical laboratories could help save many lives if sepsis and COVID-19 could be detected earlier. (Graphic copyright: McMaster University.)

Is Bioinformatics ‘Shortcut’ Faster than PCR Testing?

The National Human Genome Research Institute defines a “probe” in genetics as a “single-stranded sequence of DNA or RNA used to search for its complementary sequences in a sample genome.”

The McMaster scientists call their unique probe design process, HUBDesign, or Hierarchical Unique Bait Design. “HUB is a bioinformatics pipeline that designs probes for targeted DNA capture,” according to their paper published in the journal Cell Reports Methods, titled, “Probe Design for Simultaneous, Targeted Capture of Diverse Metagenomic Targets.”

The researchers say their probes enable a shortcut to detection—even in an infection’s early stages—by “targeting, isolating, and identifying the DNA sequences specifically and simultaneously.”

The probes’ design makes possible simultaneous targeted capture of diverse metagenomics targets, Biocompare explained.

But is it faster than PCR (polymerase chain reaction) testing?

The McMaster scientists were motivated by the “challenges of low signal, high background, and uncertain targets that plague many metagenomic sequencing efforts,” they noted in their paper.

They pointed to challenges posed by PCR testing, a popular technique used for detection of sepsis pathogens as well as, more recently, for SARS-CoV-2, the coronavirus causing COVID-19.

“The (PCR) technique relies on primers that bind to nucleic acid sequences specific to an organism or group of organisms. Although capable of sensitive, rapid detection and quantification of a particular target, PCR is limited when multiple loci are targeted by primers,” the researchers wrote in Cell Reports Methods.

According to LabMedica, “A wide array of metagenomic study efforts are hampered by the same challenge: low concentrations of targets of interest combined with overwhelming amounts of background signal. Although PCR or naive DNA capture can be used when there are a small number of organisms of interest, design challenges become untenable for large numbers of targets.”

Detecting Pathogens Faster, Cheaper, and More Accurately

As part of their study, researchers tested two probe sets:

  • one to target bacterial pathogens linked to sepsis, and
  • another to detect coronaviruses including SARS-CoV-2.

They were successful in using the probes to capture a variety of pathogens linked to sepsis and SARS-CoV-2.

“We validated HUBDesign by generating probe sets targeting the breadth of coronavirus diversity, as well as a suite of bacterial pathogens often underlying sepsis. In separate experiments demonstrating significant, simultaneous enrichment, we captured SARS-CoV-2 and HCoV-NL63 [Human coronavirus NL 63] in a human RNA background and seven bacterial strains in human blood. HUBDesign has broad applicability wherever there are multiple organisms of interest,” the researchers wrote in Cell Reports Methods.

The findings also have implications to the environment and wildlife, the researchers noted.

Of course, more research is needed to validate the tool’s usefulness in medical diagnostics. The McMaster University researchers intend to improve HUBDesign’s efficiency but note that probes cannot be designed for unknown targets.

Nevertheless, the advanced application of novel technologies to diagnose of sepsis, which causes 250,000 deaths in the US each year, according to the federal Centers for Disease Control and Prevention, is a positive development worth watching.

The McMaster scientists’ discoveries—confirmed by future research and clinical studies—could go a long way toward ending the dire effects of sepsis as well as COVID-19. That would be a welcome development, particularly for hospital-based laboratories.

—Donna Marie Pocius

Related Information:

DNA Researchers Develop Critical Shortcut to Detect and Identify Known and Emerging Pathogens

Probe Design for Simultaneous, Targeted Capture of Diverse Metagenomic Targets

New Tool Designs Probes for Targeted DNA Capture

Novel Tool Developed to Detect and Identify Pathogens

Hospitals Worldwide are Deploying Artificial Intelligence and Predictive Analytics Systems for Early Detection of Sepsis in a Trend That Could Help Clinical Laboratories Microbiologists

Penn Medicine Informatics Taps Medical Laboratory Data and Three Million Patient Records Over 10 Years to Evaluate Patients’ Sepsis Risk and Head Off Heart Failure

;