News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Next-Generation Sequencing Allows Mayo Clinic Researchers to Produce Large Dataset of Patients’ Exomes

Nearly 100,000 patients submitted saliva samples to a genetic testing laboratory, providing insights into their disease risk

Researchers at Mayo Clinic have employed next-generation sequencing technology to produce a massive collection of exome data from more than 100,000 patients, offering a detailed look at genetic variants that predispose people to certain diseases. The study, known as Tapestry, was administered by doctors and scientists from the clinic’s Center for Individualized Medicine and produced the “largest-ever collection of exome data, which include genes that code for proteins—key to understanding health and disease,” according to a Mayo Clinic news release.

For our clinical laboratory professionals, this shows the keen interest that a substantial portion of the population has in using their personal genetic data to help physicians identify their risk for many diseases and types of cancer. This support by healthcare consumers is a sign that labs should be devoting attention and resources to providing these types of gene sequencing services.

As Mayo explained in the news release, the exome includes nearly 20,000 genes that code for proteins. The researchers used the dataset to analyze genes associated with higher risk of heart disease and stroke along with several types of cancer. They noted that the data, which is now available to other researchers, will likely provide insights into other diseases as well, the news release notes.

The Mayo Clinic scientists published their findings in Mayo Clinic Proceedings titled, “Mayo Clinic Tapestry Study: A Large-Scale Decentralized Whole Exome Sequencing Study for Clinical Practice, Research Discovery, and Genomic Education.”

“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” said gastroenterologist and lead researcher Konstantinos Lazaridis, MD (above), in the news story. “It demonstrates that through innovation, determination and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.” Some of these newly identified genetic markers may be incorporated into new clinical laboratory assays. (Photo copyright: Mayo Clinic.)

How Mayo Conducted the Tapestry Study

One notable aspect of the study was its methodology. The study launched in July 2020 during the COVID-19 pandemic. Since many patients were quarantined, researchers conducted the study remotely, without the need for the patients to visit a Mayo facility. It ran for five years through May 31, 2024. The news release notes that it’s the largest decentralized clinical trial ever conducted by the Mayo Clinic.

The researchers identified 1.3 million patients from the main Mayo Clinic campuses in Minnesota, Arizona, and Florida who met the following eligibility criteria:

  • Participants had to be 18 or older,
  • they had to have internet and email access, and
  • be sufficiently proficient in speaking and reading English.

Patients with certain medical conditions, such as dementia and hematologic cancers, were excluded.

More than 114,000 patients consented to participate, but some later withdrew, resulting in a final sample of 98,222 individuals. Approximately two-thirds were women. Mean age was 57 (61.9 for men and 54.3 for women).

“It was a tremendous effort,” said Mayo Clinic gastroenterologist and lead researcher Konstantinos Lazaridis, MD, in the news release. “The engagement of such a number of participants in a relatively short time and during a pandemic showcased the trust and the dedication not only of our team but also of our patients.”

He added that the researchers “learned valuable lessons about some patients’ decisions not to participate in Tapestry, which will be the focus of future publications.”

Three Specific Genes

Enrolled patients were invited to visit a website, where they could view a video and submit an eligibility form. Once approved, they completed a digital consent agreement and received a saliva collection kit. Participants were also invited to provide information about their family history.

Helix, a clinical laboratory company headquartered in San Mateo, Calif., performed the exome sequencing.

Though Helix performed whole exome sequencing, the researchers were most interested in three specific sets of genes:

Patients received clinical results directly from Helix along with information about their ancestry. Clinical results were also transmitted to Mayo Clinic for inclusion in patients’ electronic health records (EHRs).

Among the participants, approximately 1,800 (1.9%) had what the researchers described as “actionable pathogenic or likely pathogenic variants.” About half of these were BRCA1/2.

These patients were invited to speak with a genetic counselor and encouraged to undergo additional testing to confirm the variants.

Tapestry Genomic Registry

In addition to the impact on the participants, Mayo Clinic’s now has an enormous amount of raw sequencing data stored in the Tapestry Genomic Registry, where it will be available for future research.

The database “has become a valuable resource for Mayo’s scientific community, with 118 research requests submitted,” the researchers wrote in the news release. Mayo has distribution more than a million exome datasets to other genetic researchers.

“What we’ve accomplished with the Tapestry study is a blueprint for future endeavors in medical science,” Lazaridis noted. “It demonstrates that through innovation, determination, and collaboration, we can deeply advance our understanding of DNA function and eventually other bio-molecules like RNA, proteins and metabolites, turning them into novel diagnostic tools to improve health, prevent illness, and even treat disease.”

Everything about this project is consistent with precision medicine, and the number of individuals discovered to have risk of cancers is relevant. Clinical laboratory professionals understand these ratios and the importance of early detection and early intervention. 

—Stephen Beale

Related Information:

Mayo Clinic Tapestry Study: A Large-Scale Decentralized Whole Exome Sequencing Study for Clinical Practice, Research Discovery, and Genomic Education

Mayo Clinic’s Largest-Ever Exome Study Offers Blueprint for Biomedical Breakthroughs

Mayo Clinic to Study 10,000 Patients for Drug-Gene Safety

Johns Hopkins Researchers Determine 795,000 Americans Harmed from Diagnostic Errors Annually

Clinical laboratories can play a critical role in helping doctors to order correct tests and interpret the results

Nearly 800,000 Americans die or are permanently disabled each year due to diagnostic errors. That’s according to research conducted at Johns Hopkins School of Medicine that found most misdiagnoses are due to cognitive errors on the part of the treating physicians. Many diagnoses typically begin with–and are often achieved through—clinical laboratory testing. For that reason, the range of diagnostic errors identified in this study will interest pathologists and lab managers.

Of course, many types of diagnostic errors have nothing to do with lab tests. That said, the research team noted that some diagnostic errors take place when physicians do not pay attention to test results that indicate a patient is not doing well, or do not understand the significance of the test results. There are also examples where doctors order the wrong lab tests for patients’ symptoms.

The Johns Hopkins study findings were published in the journal BMJ Quality and Safety titled, “Burden of Serious Harms from Diagnostic Error in the USA.” The research team determined that only 15 diseases “accounted for 50.7% of total serious harms” and nearly 40% of those harms involved just five medical conditions:

These can be narrowed down even further to just three categories, the researchers noted in BMJ Quality and Safety. They are:

  • Major vascular events,
  • Infections, and
  • Cancers.

In an interview with CNN Health, lead author of the study David Newman-Toker, MD, PhD, a neurology professor at Johns Hopkins and Director of the Division of Neuro-Visual and Vestibular Disorders, said “These are relatively common diseases that are missed relatively commonly and are associated with significant amounts of harm.”

David Newman-Toker, MD, PhD

“We focused here on the serious harms, but the number of diagnostic errors that happen out there in the US each year is probably somewhere on the order of magnitude of 50 to 100 million,” neurologist David Newman-Toker, MD, PhD (above), professor and Director of the Division of Neuro-Visual and Vestibular Disorders at Johns Hopkins, who led the study, told STAT. “If you actually look, you see it’s happening all the time.” Clinical laboratories play a key role in ensuring correct understanding of the tests they perform. (Photo copyright: Johns Hopkins University.)

Changes to Healthcare Risk Management

According to Newman-Toker, the Johns Hopkins study is “the first population health estimate of the number of patients seriously harmed. It also provides more information about the distribution of the diseases that are involved,” Relias Media reported.

The sheer volume of this issue is not lost on the researchers. Newman-Toker likens it to measuring an iceberg.

“You dive below the surface, and you measure the circumference of the iceberg, and [you] will say, ‘Oh my gosh, it’s really big down here.’ And then you go five more feet, and you measure the circumference, and it keeps getting bigger. By the time you’re 20 feet below the surface, you realize this is huge,” he told Relias Media.  

Newman-Toker believes his team’s research offers an opportunity for physicians and healthcare risk managers to better understand how exactly to prioritize their resources and focus their efforts. “In terms of how it informs their day-to-day decision-making, it really is rebalancing some of the efforts a little bit in the direction of conditions that are more common and more commonly misdiagnosed than perhaps indicated by simply looking at claims data,” he noted.

Vascular events can present in symptoms typical of much less serious conditions. Strokes, for example, can present with vague symptoms such as a headache or dizziness. This is similar to heart attacks, which can just present as chest pains. However, heart attacks are far less misdiagnosed than strokes because of a decades-long effort to eradicate those diagnostic errors.

“Diagnostic errors are errors of omission,” Daniel Yang, MD, an internist and Program Director for the Diagnostic Excellence Initiative at the Gordon and Betty Moore Foundation, told CNN Health. “The question is: Could [the outcome] be prevented if we had done something differently earlier on? Oftentimes, that’s a judgment call that two doctors might disagree on.”

Physicians and risk managers can work together to determine the best course of action to identify vague symptoms and prevent the deaths and serious injuries that can come from diagnostic errors.

Economic Cost of Misdiagnosis

Misdiagnosis also comes with a huge economic burden. William Padula, PhD, Assistant Professor of Pharmaceutical and Health Economics at USC Mann School of Pharmacy and Pharmaceutical Sciences, laid out the cost burden for STAT News.

“A patient comes into the ED with a headache or dizziness, and they get told it’ll go away, and then they go home. And then a week later, you find out that they [had] a stroke,” he explained. “By then, the stroke has compounded so much that what could have been addressed in the moment … for $10,000 now becomes a $100,000 issue. … So, there’s a margin of $90,000 that has been added to the US health system burden because of the misdiagnosis.”

Padula estimates that the total cost for these misdiagnoses could come to as much as $100 billion on the healthcare system.

What’s the Solution?

How can physicians avoid misdiagnoses and keep their patients safe? Newman-Toker suggests that physicians consult with other doctors. “I believe that the quickest way to solve the diagnostic error problem in the real world would be to construct approaches that basically rely on the ‘phone a friend’ model,” he told STAT News.

“This doesn’t mean that the patient should have to seek a second opinion, but rather that providers should make it standard practice to consult with a colleague before providing a diagnosis or dismissing a patient,” STAT News added.

Clinical laboratory professionals should note that while these misdiagnoses do not take place in the lab, doctor may order incorrect tests for patients by misreading their symptoms. Thus, clinical pathologists and lab scientists can play a critical role in helping doctors to order the correct tests for their patients and accurately interpret the results.

—Ashley Croce

Related Information:

Burden of Serious Harms from Diagnostic Error in the USA

Burden of Harm from Diagnostic Error Still High

Diagnostic Errors Linked to Nearly 800,000 Deaths or Cases of Permanent Disability in US Each Year, Study Estimates

Misdiagnoses Cost the US 800,000 Deaths and Serious Disabilities Every Year, Study Finds

Cognitive Errors in Clinical Decision Making

What is Diagnostic Error?

Mayo Clinic Researchers Find Some Bacteria Derail Weight Loss, Suggest Analysis of Individuals’ Microbiomes; a Clinical Lab Test Could Help Millions Fight Obesity

CDC reports more than 93-million US adults are obese, and health issues related to obesity include heart disease, stroke, type 2 diabetes, and cancers

In recent years, the role of the human microbiome in weight loss or weight gain has been studied by different research groups. There is keen interest in this subject because of the high rates of obesity, and diagnostic companies know that development of a clinical laboratory test that could assess how an individual’s microbiome affects his/her weight would be a high-demand test.

This is true of a study published this year in Mayo Clinic Proceedings. Researchers at Mayo Clinic looked at obese patients who were in an active lifestyle intervention program designed to help them lose weight. It was determined that gut microbiota can have a role in both hindering weight loss and supporting weight loss.

Gut Microbiota More Complicated than Previously Thought

The Mayo researchers determined “an increased abundance of Phascolarctobacterium was associated with [successful weight loss]. In contrast, an increased abundance of Dialister and of genes encoding gut microbial carbohydrate-active enzymes was associated with failure to [lose] body weight. A gut microbiota with increased capability for carbohydrate metabolism appears to be associated with decreased weight loss in overweight and obese patients undergoing a lifestyle intervention program.”

How do bacteria impede weight loss? Vandana Nehra, MD, Mayo Clinic Gastroenterologist and co-senior author of the study, explained in a news  release.

“Gut bacteria have the capacity to break down complex food particles, which provides us with additional energy. And this is normally is good for us,” she says. “However, for some individuals trying to lose weight, this process may become a hindrance.”

Put another away: people who more effectively metabolized carbohydrates were the ones who struggled to drop the pounds, New Atlas pointed out.

Vandana Nehra, MD (left), and Purna Kashyap, MBBS (right), are Mayo Clinic Gastroenterologists and co-senior authors of the Mayo study. “While we need to replicate these findings in a bigger study, we now have an important direction to pursue in terms of potentially providing more individualized strategies for people who struggle with obesity,” Nehra noted in the news release. Thus, precision medicine therapy for obese individuals could be based on Mayo Clinic’s research. (Photo copyright: Mayo Clinic.)

Mayo Study Provides Clues to Microbiota Potential in Weight Loss

The Mayo researchers wanted to know how gut bacteria behave in people who are trying to lose weight.

They recruited 26 people, ranging in age from 18 to 65, from the Mayo Clinic Obesity Treatment Research Program. Fecal stool samples, for researchers’ analysis, were collected from participants at the start of the three-month study period and at the end.  The definition of successful weight loss was at least 5% of body weight.

Researchers found the following, according Live Science:

  • 2 lbs. lost, on average, among all participants;
  • Nine people were successful, losing an average of 17.4 lbs.;
  • 17 people did not meet the goal, losing on average just 3.3 lbs.; and,
  • More gut bacterial genes that break down carbohydrates were found in stool samples of the unsuccessful weight loss group, as compared to the successful dieters.

The researchers concluded that “An increased abundance of microbial genes encoding carbohydrate-active enzyme pathways and a decreased abundance of Phascolarctobacterium in the gut microbiota of obese and overweight individuals are associated with failure to lose at least 5% weight following a 3-month comprehensive lifestyle intervention program.”

Purna Kashyap, MBBS, Mayo Clinic Gastroenterologist and co-senior author of the study, told Live Science, “The study suggests there is a need to take the microbiome into account in clinical studies (on weight loss), and it also provides an important direction to pursue in terms of providing individualized care in obesity.” The very basis of precision medicine.

Future Weight-Loss Plans Based on Patient’s Microbiota

The Mayo Clinic researchers acknowledged the small sample size and need for more studies with larger samples over a longer time period. They also noted in their paper that Dialister has been associated with oral infections, such as gingivitis, and its role in energy expenditure and metabolism is unclear.

Still, the study suggests that it may soon be possible to give people individualized weight loss plans based on their gut bacteria. Clinical laboratory professionals and pathologists will want to stay abreast of follow-up studies and replication of findings by other research teams. A future medical laboratory test to analyze patients’ microbiomes could help obese people worldwide as well as lab business volume.

—Donna Marie Pocius

Related Information:

Gut Microbial Carbohydrate Metabolism Hinders Weight Loss in Overweight Adults Undergoing Lifestyle Intervention with a Volumetric Diet

Gut Microbiota from Twins Discordant for Obesity Modulate Metabolism in Mice

CDC: Adult Obesity Facts

Makeup of an Individual’s Gut Bacteria May Play Role in Weight Loss, Mayo Study Suggests

Struggle to Lose Weight? Your gut Bacteria May Be to Blame

Your Gut Bacteria May Make It Harder to Lose Weight

Diet Hit a Snag? Your Gut Bacteria May be Partly to Blame

Can’t Lose Weight? Your Gut Bacteria Could be to Blame, According to Study

Richness of Human Gut Microbiome Correlates with Metabolic Markers

Annual Medical Spending Attributable to Obesity: Payer- and Service-Specific Estimates

5 Ways Gut Bacteria Affect Your Health

Cornell Researchers Identify Gut Microbes That May Help Some People Remain Thin; Findings Could Result in Clinical Laboratory Tests to Analyze Microbiomes of Individuals

Clinical Laboratories Might Soon be Diagnosing Obesity and Guiding Therapies that Utilize Engineered Microbes

Google Takes First Steps to Create World’s Largest Human Genome Database as Part of Wider Strategy to Become a Major Player in Healthcare ‘Big Data’

Google’s goal is to build a genomics database to facilitate early diagnosis and prevention of life-threatening diseases; may give pathologists a new diagnostic tool

Google (NASDAQ: GOOG) is preparing to build a human genome database that it says may become the world’s biggest. The company plans to also assemble other medical information, including clinical laboratory test data, as it pursues plans to become a player in the market for healthcare Big Data.

This work will be done by Google X Life Sciences, a new business for Google. The project is known as the Baseline Study. (more…)

Swiss Researchers Developing a Smartphone-based Coagulation Test to Help Patients on Anticoagulation Therapy to Self-Test at Home

The device would save patients frequent trips to a hospital medical laboratory and automatically transmit coag test results to attending physicians

Researchers in Switzerland are putting coagulation testing together with a smartphone specifically to allow patients to do home self-testing. This is another example of how technology is getting closer to moving medical laboratory tests out of the core lab and into near-patient settings.

This groundbreaking work is being done by researchers at École Polytechnique Fédérale de Lausanne (EPFL) [Swiss Federal Institute of Technology]. They want to develop a smartphone device that enables patients to monitor their own anticoagulation therapy at home, according to a report published by Fiercemobilehealthcare.com. (more…)

;