By offering DTC preventative gene sequencing, hospital leaders
hope to help physicians better predict cancer risk and provide more accurate
diagnoses
Two Boston health systems, Brigham and Women’s Hospital and Massachusetts General Hospital (MGH), are the latest to open preventative gene sequencing clinics and compete with consumer gene sequencing companies, such as 23andMe and Ancestry, as well as with other hospital systems that already provide similar services.
This may provide opportunities for clinical laboratories. However, some experts are concerned that genetic sequencing may not be equally available to patients of all socioeconomic classes. Nor is it clear how health systems plan to pay for the equipment and services, since health insurance companies continue to deny coverage for “elective” gene sequencing, or when there is not a “clear medical reason for it, such as for people with a long family history of cancer,” notes STAT.
Therefore, not everyone is convinced of the value of gene sequencing to either patients or hospitals, even though advocates tout gene sequencing as a key element of precision medicine.
Is Preventative Genetic Sequencing Ready for the Masses?
Brigham’s Preventive Genomics Clinic offers comprehensive DNA sequencing, interpretation, and risk reporting to both adults and children. And MGH “plans to launch its own clinic for adults that will offer elective sequencing at a similar price range as the Brigham,” STAT reported.
The Brigham and MGH already offer similar gene sequencing services as other large health systems, such as Mayo Clinic and University of California San Francisco (UCSF), which are primarily used for research and cancer diagnoses and range in price depending on the depth of the scan, interpretation of the results, and storage options.
However, some experts question whether offering the
technology to consumers for preventative purposes will benefit anyone other
than a small percentage of patients.
“It’s clearly not been demonstrated to be cost-effective to promote this on a societal basis,” Robert Green, MD, MPH, medical geneticist at Brigham and Women’s Hospital, and professor of genetics at Harvard, told STAT. “The question that’s hard to answer is whether there are long-term benefits that justify those healthcare costs—whether the sequencing itself, the physician visit, and any downstream testing that’s stimulated will be justified by the situations where you can find and prevent disease.”
Additionally, large medical centers typically charge more
for genomic scans than consumer companies such as 23andMe and Ancestry. Hospital-based
sequencing may be out of the reach of many consumers, and this concerns some
experts.
“The idea that genomic sequencing is only going to be
accessible by wealthy, well-educated patrons who can pay out of pocket is
anathema to the goals of the publicly funded Human Genome Project,” Jonathan
Berg, MD, PhD, Genetics Professor, University of North Carolina at Chapel
Hill, told Scientific
American.
And, according to the American Journal of Managed Care, “It’s estimated that by 2021, 100 million people will have used a direct-to-consumer (DTC) genetic test. As these tests continue to gain popularity, there is a need for educating consumers on their DTC testing results and validating these results with confirmatory testing in a medical-grade laboratory.”
This is why it’s critical that clinical laboratories and
anatomic pathology groups have a genetic testing and gene sequencing strategy,
as Dark
Daily reported.
David Bick, MD, Chief Medical Officer at the HudsonAlpha Institute for Biotechnology and Medical Director of the Smith Family Clinic for Genomic Medicine, told Scientific American, “there’s just more and more interest from patients and families not only because of 23andMe and the like, but because there’s just this understanding that if you can find out information about your health before you become sick, then really our opportunity as physicians to do something to help you is much greater.”
Is Preventative Genomics Elitist?
As large medical centers penetrate the consumer genetic
testing market some experts express concerns. In a paper he wrote for Medium,
titled, “Is Preventive Genomics Elitist?” Green asked, “Is a service like this
further widening the inequities in our healthcare system?”
Green reported that while building the Preventive Genomics Clinic at Brigham, “we … struggled with the reality that there is no health insurance coverage for preventive genomic testing, and our patients must therefore pay out of pocket. This is a troubling feature for a clinic at Brigham and Women’s Hospital, which is known for its ties to communities in Boston with diverse ethnic and socioeconomic backgrounds.”
Most of Brigham’s early genetics patients would likely be “well-off,
well-educated, and largely white,” Green wrote. “This represents the profile of
typical early adopters in genetic medicine, and in technology writ large. It
does not, however, represent the Clinic’s ultimate target audience.”
More Data for Clinical Laboratories
Nevertheless, preventive genomics programs offered by large
health systems will likely grow as primary care doctors and others see evidence
of value.
Therefore, medical laboratories that process genetic
sequencing data may soon be working with growing data sets as more people reach
out to healthcare systems for comprehensive DNA sequencing and reporting.
Low prices to encourage consumers to order its WGS service is one way Veritas co-founder and genetics pioneer George Church hopes to sequence 150,000 genomes by 2021
By announcing an annotated whole-genome sequencing (WGS) service to consumers for just $599, Veritas Genetics is establishing a new price benchmark for medical laboratories and gene testing companies. Prior to this announcement in July, Veritas priced its standard myGenome service at $999.
“There is no more comprehensive genetic test than your whole genome,” Rodrigo Martinez, Veritas’ Chief Marketing and Design Officer, told CNBC. “So, this is a clear signal that the whole genome is basically going to replace all other genetic tests. And this [price drop] gets it closer and closer and closer.”
Pathologists and clinical laboratory managers will want to watch to see if Veritas’ low-priced, $599 whole-genome sequencing becomes a pricing standard for the genetic testing industry. Meanwhile, the new price includes not only the sequencing, but also an expert analysis of test results that includes information on more than 200 conditions, Veritas says.
“The focus in our industry is shifting from the cost of sequencing genomes to interpretation capabilities and that’s where our secret sauce is,” said Veritas CEO Mirza Cifric in a news release. “We’ve built and deployed a world class platform to deliver clinically-actionable insights at scale.” The company also says it “achieved this milestone primarily by deploying internally-developed machine learning and AI [artificial intelligence] tools as well as external tools—including Google’s DeepVariant—and by improving its in-house lab operations.”
The myGenome service offers 30x WGS, which Veritas touts in company documentation as the “gold standard” for sequencing, compared to the less-precise 0.4x WGS.
The myGenome service is available only in the United States.
Will Whole-Genome Sequencing Replace Other Genetic Tests?
Veritas was co-founded by George Church, PhD, a pioneer of personal genomics through his involvement with the Harvard Personal Genome Project at Harvard Medical School. In a press release announcing the launch of myGenome in 2016, Veritas described its system as “the world’s first whole genome for less than $1,000, including interpretation and genetic counseling.”
Church predicts that WGS will someday replace other genetic tests, such as the genotyping used by personal genomics and biotechnology company 23andMe.
“Companies like 23andMe that are based on genotyping technology basically opened the market over the last decade,” Martinez explained in an interview with WTF Health. “They’ve done an incredible job of getting awareness in the general population.”
However, he goes on to say, “In genotyping technology, you
are looking at very specific points of the genome, less than half of one
percent, a very small amount.”
Martinez says Veritas is sequencing all 6.4 billion letters
of the genome. And, with the new price point, “we’re closer to realizing that
seismic shift,” he said in the news release.
“This is the inflection point,” Martinez told CNBC.
“This is the point where the curve turns upward. You reach a critical mass when
you are able to provide a product that gives value at a specific price point.
This is the beginning of that. That’s why it’s seismic.”
Payment Models Not Yet Established by Government, Private
Payers
However, tying WGS into personalized medicine that leads to actionable diagnoses may not be easy. Robin Bennett, PhD (hon.), a board certified senior genetic counselor and Professor of Medicine and Medical Genetics at UW School of Medicine, told CNBC, “[Healthcare] may be moving in that direction, but the payment for testing and for services, it hasn’t moved in the preventive direction. So, unless the healthcare system changes, these tests may not be as useful because … the healthcare system hasn’t caught up to say, ‘Yes, we support payment for this.’”
“Insurers are looking for things where, if you get the
information, there’s something you can do with it and that both the provider
and the patient are willing and able to use that information to do things that
improve their health,” Phillips told CNBC. “Insurers are very interested
in using genetic testing for prevention, but we need to . . . demonstrate that
the information will be used and that it’s a good trade-off between the
benefits and the costs.”
Sequencing for Free If You Share Your Data
Church may have an answer for that as well—get biopharmaceutical companies to foot the bill. Though Veritas’ new price for their myGenome service is significantly lower than before, it’s not free. That’s what Nebula Genomics, a start-up genetics company in Massachusetts co-founded by Church, offers people willing to share the data derived from their sequencing. To help biomedical researchers gather data for their studies, Nebula provides free or partially-paid-for whole-genome sequencing to qualified candidates.
“Nebula will enable individuals to get sequenced at much
lower cost through sequencing subsidies paid by the biopharma industry,” Church
told BioSpace.
“We need to bring the costs of personal genome sequencing close to zero to
achieve mass adoption.”
So, will lower-priced whole-genome sequencing catch on?
Perhaps. It’s certainly popular with everyday people who want to learn their
ancestry or predisposition to certain diseases. How it will ultimately affect
clinical laboratories and pathologists remains to be seen, but one thing is
certain—WGS is here to stay.
As the public gains awareness of the role clinical laboratories play in modern healthcare, increased engagement and understanding of the technology underlying many of these advances could create risk for labs without transparent reporting protocols to both patients and the public
In recent years, consumers have continually raised the bar in their expectation of quality when they interact with the healthcare system. Not only do patients expect providers—including clinical laboratories and anatomic pathology groups—to improve regularly over time, but the public has even less tolerance for medical errors of any type. Thus, a recent NPR story is one more warning to the medical laboratory profession that it should be devoting resources and effort to improving quality.
Today’s healthcare consumers and patients are more educated about and involved in the care process than ever before. While the exact science and skills may not interest the general public, the technologies underpinning much of the shift toward personalized medicine (AKA, precision medicine) are the same technologies that created the always-connected, digital lifestyles seen around the world.
With this, comes a level of scrutiny and questioning from the public that clinical laboratories or anatomic pathology groups would not have experienced even just a decade ago.
Mounting Scrutiny of Medical Laboratories and Healthcare Professionals
A recent segment on NPR’s “All Things Considered” highlighted this trend and questioned the quality control standards behind many of the procedures powering current testing. The segment also questioned the impact quality control has on the quality of biobanks used to research and create future technologies and tests.
Atul Butte, PhD (above), Director of the Institute of Computation Health Sciences at the University of California-San Francisco, presents an alternate side to Compton and Friedberg’s views in the NPR article. “I am not a believer in garbage-in, garbage out at all,” he said. “I know that no one scientist, no one clinician or pathologist is perfect … But, I’d rather take 10 or 100 so-called mediocre data sets and find out what’s in common, then to take one who says they’re perfect at doing this kind of measurement.” (Photo copyright: Santiago Mejia/San Francisco Chronicle.)
When data and previous research powers much of the innovation taking place across the modern healthcare landscape, the accuracy of said data would seem critical. Yet, without standards in place, there’s not always safeties by which to verify sample integrity and other critical concerns.
Late last year, Dark Daily reported on a study published in PLOS ONE from Radboud University in the Netherlands questioning the accuracy of more than 30,000 published scientific studies that contained misidentified or contaminated cell lines. Guidelines, such as those created for IHR and FISH HER2 testing, provide standards intended to prevent such issues from occurring or detecting them when they do occur.
Quality versus Quantity: A Gamble Worth Taking?
Apart from challenges with healthcare reform and the regulatory landscape surrounding precision medicine, medical laboratories also must struggle with the challenges of gleaning and maintaining useful, accurate information from an ever-growing trove of data produced by analyzers and assays.
Yet, these mediocre datasets include the results of tests that carried a potentially significant impact on patient lives. In the first two weeks of February alone, both the St. Louis Post-Dispatch and The Telegraph published stories related to erroneous testing related to cancer and the potential impact on the clinical laboratories involved and the patients tested.
Increased coverage shows that the world is watching what goes on in medical laboratories, hospitals, and data centers as healthcare continues to evolve. Clinical laboratories must move forward with this in mind or risk pushback and questioning from the public. Transparency regarding standards, and reporting information to patients surrounding testing or concerns, might effectively address this rising trend.
“We are moving faster and faster and faster as this whole precision medicine train is moving down the track,” Tim Allen, MD, Laboratory Director at the University of Texas Medical Branch Department of Laboratory Services, told NPR. “I suspect standardization of these things is going to become a reality much quicker than I would have expected even a few years ago.”
That quality control issues in anatomic pathology are considered newsworthy by no less than NPR is a sign of increased public attention to the quality of lab testing. The story was written to educate the public about the gap that exists in the quality control of anatomic pathology testing. All of this is consistent with the trend for providers to be transparent and report their quality metrics to the public, including patients.
Clinical labs and pathology groups know how advances in targeted therapies and genomics far outpace providers’ and patients’ ability to know how best to use and pay for them.
One fascinating development on the road to precision medicine is that many new cancer drugs now in clinical trials will require a companion genetic test to identify patients with tumors that will respond to a specific therapeutic drug.
This implies more genetic testing of tumors, a prospect that challenges both the Medicare program and private health insurers because they already struggle to cope with the flood of new genetic tests and molecular diagnostic assays. However, even as this genetic testing wave swamps payers, some pharmaceutical companies have cancer drugs for rare types of cancers and these companies would like to see more genetic testing of tumors.
Pathologists and clinical laboratory managers will find this to be precisely the dilemma facing specialty pharma company Loxo Oncology (NASDAQ:LOXO), a biopharmaceutical company located in San Francisco and Stamford, Conn.
Loxo is developing larotrectinib (LOXO-101), a “selective TRK inhibitor.” According to a Loxo press release, Larotrectinib is “a potent, oral, and selective investigational new drug in clinical development for the treatment of patients with cancers that harbor abnormalities involving the tropomyosin receptor kinases (TRK receptors).” In short, the drug is designed to “directly target TRK, and nothing else, turning off the signaling pathway that allows TRK fusion cancers to grow.”
How to Find Patients for This Cancer Drug
While a powerful, new, targeted cancer drug will be a boon to cancer therapy, it is only intended for a relatively small number of patients. Loxo estimates that between 1,500 and 5,000 cases of cancer are caused by TRK mutations in the United States each year. Conversely, according to the National Cancer Institute, the total number of new cancer diagnoses in the US in 2016 was 1,685,210.
An article in MIT Technology Review on larotrectinib notes, “To find patients, Loxo will need to convince more doctors to order comprehensive tests that screen multiple genes at once, including TRK.” And that is where things get complicated.
“These advanced genetic tests, which can cost $5,000 or more, are offered by companies like Foundation Medicine, Caris Life Sciences, and Cancer Genetics. The problem is, insurers still consider the tests ‘experimental’ and don’t routinely cover them, meaning patients are often stuck picking up the bill,” notes MIT Technology Review.
Data for the graph above comes from theNational Human Genome Research Institute. The graph illustrates the steep decline in cost for whole genome sequencing over the past 17 years. As the cost of genetic testing drops, development of targeted-drug cancer therapies increases. Clinical laboratories and anatomic pathology groups can expect to be performing more such tests in the future. (Graphic copyright: National Human Genome Research Institute/Simple English Wiki.)
To further confuse the market, the National Cancer Institute states that “Insurance coverage of tumor DNA sequencing depends on your insurance provider and the type of cancer you have. Insurance providers typically cover a DNA sequencing test if there is sufficient evidence to support that the test is necessary to guide patient treatment. Tests without sufficient evidence to support their utility may be considered experimental and are likely not covered by insurance.”
Many reliable sources agree. For example, the US National Library of Medicine Genetics Home Reference states, “In many cases, health insurance plans will cover the costs of genetic testing when it is recommended by a person’s doctor.”
That, however, leads to a different conundrum for drug makers such as Loxo: the majority of doctors are not keeping up with the rapid-fire pace of discovery in the realm of genetics and targeted therapies. Some genes like BRCA1 and BRCA2 are familiar enough to doctors that they know how and why they are important. However, most other genes are less known, and critically, less understood by doctors who must also focus on all the other myriad aspects of patient care.
In an article on the Color Genomics $249 Hereditary Cancer Test, which tests for mutations in 30 genes, Timothy Hamill, MD, Professor Emeritus, University of California San Francisco (UCSF) Department of Laboratory Medicine, and former overall director of UCSF’s clinical laboratories, told Wired, “If you talk to docs, they say ‘BRCA, that’s the only thing I’m interested in because I don’t know what to do with the other information.’ Doctors don’t know what to do with it. Patients don’t know what to do with it.”
More Testing Equals More Knowledge
Further complicating the issue, there is an enormous lack of information on how multipanel screenings will affect individuals, public health, and the cost of healthcare in general. Several studies are underway, but they are so new it could be years before any real results become available.
Five years ago, it cost about $20,000 to sequence the whole human genome. Now the average price is $1,500, though there are more and less expensive types of genetic tests. As the cost continues to decline, however, more people will undergo the testing and scientists will learn more about how to identify the best therapy to treat cancers caused by genetic mutations.
High rates of variability from one drop to another raise questions about the reliability of point of care testing equipment and companies that collect lab specimens only with finger sticks
In response, the embattled lab company in Palo Alto, Calif., has maintained that it is doing everything it can to correct any deficiencies in its clinical laboratory testing methods and to ensure its partners that its processes are scientifically sound and its methods valid. (more…)