News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

UCLA Spinoff Develops AI Tool That Improves Accuracy of Prostate Cancer Assessments

Software analyzes imaging scans and clinical laboratory data to help oncologists and anatomic pathologists visualize a tumor’s extent

Anatomic pathologists understand that, along with breast cancer, diagnostic testing for prostate cancer accounts for a high volume of clinical laboratory tests. Thus, a recent study indicating that a new artificial intelligence (AI)-based software tool can dramatically improve physicians’ ability to identify the extent of these cancers will be of interest.

The software, known as Unfold AI, was developed by Avenda Health, a University of California Los Angeles (UCLA) spinoff company. Unfold AI, according to Avenda, predicts focal therapy success by an increase of 77% over standard methods.

“The study found that Unfold AI’s patient-specific encapsulation confidence score (ECS), which is generated based on multiple patient data points, including MRI scans, biopsy results, PSA [prostate-specific antigen] data, and Gleason scores, is critical for predicting treatment success,” an Avenda press release states. “These findings emphasize the importance of Unfold AI’s assessment of tumor margins in predicting treatment outcomes, surpassing the predictive capability of conventional parameters.”

“Unfold AI’s ability to identify tumor margins and provide the ECS will improve treatment recommendations and allow for less-invasive interventions,” said study co-author Wayne Brisbane, MD, a urologic oncologist and UCLA medical professor, in another press release. “This more comprehensive approach enhances our ability to predict treatment outcomes and tailor interventions effectively to individual patient needs.”

The UCLA researchers published their findings titled, “Artificial Intelligence Improves the Ability of Physicians to Identify Prostate Cancer Extent,” in The Journal of Urology. Results were also presented at the 2024 American Urological Association annual meeting.

“This study is important because it shows the ability of AI to not only replicate expert physicians, but to go beyond human ability,” said study co-author Wayne Brisbane, MD (above), a urologic oncologist and UCLA medical professor, in a press release. “By increasing the accuracy of cancer identification in the prostate, more precise and effective treatment methods can be prescribed for patients.” Clinical laboratories that work with anatomic pathologists to diagnose prostate and other cancers may soon have a new AI testing tool. (Photo copyright: UCLA.)

How Unfold AI Works

To gauge the extent of prostate tumors, surgeons typically evaluate results from multiple diagnostic methods such as PSA tests and imaging scans such as MRIs, according to a UCLA press release. However some portions of a tumor may be invisible to an MRI, causing doctors to underestimate the size.

Unfold AI, originally known as iQuest, was designed to analyze data from PSA, MRI, fusion biopsy, and pathology testing, according to a company brochure. From there, it generates a 3D map of the cancer. Avenda’s website says the technology provides a more accurate representation of the tumor’s extent than conventional methods.

“Accurately determining the extent of prostate cancer is crucial for treatment planning, as different stages may require different approaches such as active surveillance, surgery, focal therapy, radiation therapy, hormone therapy, chemotherapy, or a combination of these treatments,” Brisbane said in the UCLA press release.

Putting AI to the Test

In the new study, the UCLA researchers enlisted seven urologists and three radiologists to review 50 prostate cancer cases. Each patient had undergone prostatectomy—surgical removal of all or part of the prostate—but might have been eligible for focal therapy, a less-aggressive approach that uses heat, cryotherapy, or electric shocks to attack cancer cells more selectively.

The physicians came from five hospitals and had a wide range of clinical experience from two to 23 years, the researchers noted in The Journal of Urology.

They reviewed clinical data and examined MRI scans of each patient, then “manually drew outlines around the suspected cancerous areas, aiming to encapsulate all significant disease,” the press release states. “Then, after waiting for at least four weeks, they reexamined the same cases, this time using AI software to assist them in identifying the cancerous areas.”

The researchers analyzed the physicians’ work, evaluating the accuracy of the cancer margins and the “negative margin rate,” indicating whether the clinicians had identified all of the cancerous tissue. Using conventional approaches, “doctors only achieved a negative margin 1.6% of the time,” the press release states. “When assisted by AI the number increased to 72.8%.”

The clinicians’ accuracy was 84.7% when assisted by AI versus 67.2% to 75.9% for conventional techniques.

They also found that clinicians who used the AI software were more likely to recommend focal therapy over more aggressive forms of treatment.

“We saw the use of AI assistance made doctors both more accurate and more consistent, meaning doctors tended to agree more when using AI assistance,” said Avenda Health co-founder and CEO Shyam Natarajan, PhD, who was senior author of the study.

“These results demonstrate a marked change in how physicians will be able to diagnose and recommend treatment for prostate cancer patients,” said Natarajan in a company press release. “By increasing the confidence in which we can predict a tumor’s margins, patients and their doctors will have increased certainty that their entire tumor is treated and with the appropriate intervention in correlation to the severity of their case.”

Already Cleared by FDA

Avenda received FDA 510(k) clearance for Unfold AI in November 2022. On July 1, 2024, the American Medical Association (AMA) implemented a CPT [Current Procedural Terminology] Category III code for the software, enabling insurance reimbursement for services that employ the technology, the company said in a press release.

The AMA describes CPT Category III as “a temporary set of codes for emerging technologies, services, procedures, and service paradigms.”

In the same press release, Avenda revealed that the federal Centers for Medicare and Medicaid Services (CMS) had assigned a national payment rate for Unfold AI.

UCLA’s study found that AI can outperform doctors both in sensitivity (a higher detection rate of positive cancers) and specificity (correctly detecting the sample as negative). That’s relevant and worth watching for further developments.

Pathologists and clinical laboratory managers should consider this use of AI as one more example of how artificial intelligence can be incorporated into diagnostic tests in ways that allow medical laboratory professionals to diagnose disease earlier and more accurately. This will improve patient care because early intervention for most diseases leads to better outcomes.

—Stephen Beale

Related Information:

New Study Proves AI Enhances Physicians’ Ability to Identify Prostate Cancer Extent with 84 Percent Accuracy

New Study Demonstrates Avenda Health’s Unfold AI to Better Predict Focal Therapy Success by 77% as Compared to Standard Methods

AI Model May Yield Better Outcomes for Prostate Cancer

Artificial Intelligence Improves the Ability of Physicians to Identify Prostate Cancer Extent

Artificial Intelligence Detects Cancer with 25% Greater Accuracy than Doctors in UCLA Study

Study Finds Unfold AI Better Predicts Focal Therapy Success in Prostate Cancer Patients

First AI-Powered Precision Oncology Platform for Prostate Cancer Care, iQuest Receives FDA Clearance

University of Missouri-Kansas City Study Finds Colorectal Cancer Cases Up 500% among Children

Trend will likely lead to physicians ordering more clinical laboratory screening tests for cancer among all age groups, including young patients

Upticks in colorectal cancer cases among younger populations, as reported in recent news stores, is an issue that has implications for clinical laboratories. According to a study conducted at the University of Missouri-Kansas City (UMKC), the number of colorectal cancer cases in the US has increased greatly since 1999 with the “most dramatic jumps” seen in children, teens, and young adults, a Digestive Disease Week (DDW) news release reported.

“Colorectal cancer is no longer considered just a disease of the elderly population,” said lead researcher Islam Mohamed, MD, an internal medicine resident physician at UMKC. “It’s important that the public is aware of signs and symptoms of colorectal cancer.” 

The researchers noted in the DDW news release that “colorectal cancer cases, over about two decades, increased by 500% among children, ages 10 to 14; 333% in teens, ages 15 to 19; and 185% among young adults, ages 20 to 24.”

The UMKC researchers presented their study, “Evolving Trends in Colorectal Cancer Incidence among Patients Under 45: A 22-Year Analysis of the Centers for Disease Control Wonder Database,” at the 2024 Digestive Disease Week conference in May.

DDW is “the largest international gathering of physicians, researchers, and academics in the fields of gastroenterology, hepatology, endoscopy and gastrointestinal surgery. Jointly sponsored by the American Association for the Study of Liver Diseases (AASLD), the American Gastroenterological Association (AGA), the American Society for Gastrointestinal Endoscopy (ASGE) and the Society for Surgery of the Alimentary Tract (SSAT),” the news release states.

“[The results of the UMKC study] means that there is a trend. We don’t know what to make of it yet. It could be lifestyle factors or genetics, but there is a trend,” lead researcher Islam Mohamed, MD (above), Internal Medicine Resident, University of Missouri-Kansas City, told NBC News. If proved, this trend could lead to increased demand for clinical laboratory screening tests for colorectal and other cancers among young people. (Photo copyright: Digestive Disease Week.)

Small Number of Cases, Big Rate of Change

Mohamed and his UMKC research team tapped the Centers for Disease Control and Prevention Wonder online database to determine the incidence of colorectal cancer in people aged 10 to 44 from 1999 to 2020. They found that in 2020 cases had reached:

  • 0.6/100,000 children ages 10 to 14 (a 500% increase).
  • 1.3/100,000 teens ages 15 to 19 (a 333% increase).
  • Two/100,000 young adults ages 20 to 24 (a 185% increase).

Albeit small numbers, the cases are growing at a rate that is troublesome, according to experts. As NBC put it, “any increase can take on a larger significance” when rates begin at low points.  

“When you are starting off with a very rare disease in a 15-year-old and you add a couple cases, you are going to have a huge percentage increase,” Folasade May, MD, PhD, Assistant Professor at the David Geffen School of Medicine and an Associate Director of the UCLA Kaiser Permanente Center for Health Equity, told NBC News.

The study also found incidence of colorectal cancer up in people in their 30s and 40s, reaching by 2020:

  • 6.5/100,000 people ages 30 to 34 (a 71% increase).
  • 11.7/100,000 people ages 35 to 39 (a 58% increase).
  • 20/100,000 people ages 40 to 44 (a 37% increase).

Screening Guidelines May Need to Change

Further research based on UMKC’s study findings could lead to changes in cancer screening guidelines.

“We were screening people from the age of 60 for colon cancer. This has now been lowered to 55, and that is due to be lowered again to 50 over the next few months,” Jude Tidbury, RN, nurse endoscopist and clinical nurse specialist, gastroenterology and endoscopy, at the UK’s East Sussex Healthcare NHS Trust, told Healthline.

In the US, the American Cancer Society advises people of average risk for cancer to start screening for colorectal cancer at age 45. The test options ACS recommends annually include:

Other Study Findings

What is behind early-onset colorectal cancer among certain age groups? An international study led by Fred Hutchinson Cancer Center (Fred Hutch), Seattle, found “strong correlations” with consuming alcohol and being obese with early-onset colorectal cancer in adults under age 50, according to a news release.

The researchers set out to explore the common genetic variants and causal modifiable risk factors that are behind early-onset colorectal cancer, according to a paper they published in the journal Annals of Oncology.

To do so they used big databases, pulling out 6,176 early-onset colorectal cancer cases and 65,829 controls from sources including:

They then conducted a genome-wide association study and Mendelian randomization analysis to identify causes of early-onset colorectal cancer.

They focused on “lifestyle factors increasing risk” by comparing the genetic variations in those with colorectal cancer to healthy people, the Fred Hutch news release explained.

“It’s important to see that alcohol and obesity are linked to early-onset colorectal cancer. Also, insulin signaling and infection-related biological pathways. These are all really important to understand—it’s helping us to develop interventions,” said Ulrike Peters, PhD, Professor and Associate Director, Public Health Services Division, Fred Hutch, who co-led the research, in the news release.

Peters noted future research may aim to address data gaps relating to racial and ethnic groups.  

More Colorectal Cancer Tests

As studies continue to explore the notion that cancer may not be a disease of aging,

clinical laboratories could see more primary care physicians and healthcare consumers using colorectal cancer screening tests, which require analysis and reporting by labs.

Medical laboratory leaders may want to proactively encourage lab sales and service representatives to educate physician office staff about using the lab’s available resources for screening young adults for colorectal cancer.

—Donna Marie Pocius

Related Information:

Colorectal Cancer Cases More than Tripled among Teens over Two Decades

Evolving Trends in Colorectal Cancer Incidence among Patients Under 45: A 22-Year Analysis of the Centers for Disease Control Wonder Database

Colon Cancer Rates Have Been Rising for Decades in Younger People, Study Finds

Colorectal Cancer Rates Falling in Older Adults but Rising in Children

Study Digs into What’s Driving Early-onset Colon Cancer

Genome-wide Association Studies and Mendelian Randomization Analyses Provide Insights into the Causes of Early-onset Colorectal Cancer

UCLA Researchers Discover Organisms in Semen Microbiome That Affect Sperm Motility and Male Fertility

Study findings could lead to new clinical laboratory testing biomarkers designed to assess for male infertility

Clinical laboratories are increasingly performing tests that have as their biomarkers the DNA and enzymes found in human microbiota. And microbiologists and epidemiologists know that like other environments within the human body, semen has its own microbiome. Now, a study conducted at the University of California, Los Angeles (UCLA) has found that the health of semen microbiome may be linked to male infertility. 

The UCLA researchers discovered a small group of microorganisms within semen that may impair the sperm’s motility (its ability to swim) and affect fertility.

A total of 73 individuals were included in the study. About half of the subjects were fertile and already had children, while the remaining men were under consultation for fertility issues.

“These are people who have been trying to get pregnant with their partner, and they’ve been unsuccessful,” Sriram Eleswarapu, MD, PhD, a urologist at UCLA and co-author of the study, told Scientific American. “This latter group’s semen samples had a lower sperm count or motility, both of which can contribute to infertility.”

The researchers published their findings in Scientific Reports titled, “Semen Microbiota Are Dramatically Altered in Men with Abnormal Sperm Parameters.”

“There is much more to explore regarding the microbiome and its connection to male infertility,” said Vadim Osadchiy, MD (above), a resident in the Department of Urology at UCLA and lead author of the study, in a UCLA news release. “However, these findings provide valuable insights that can lead us in the right direction for a deeper understanding of this correlation.” Might it also lead to new biomarkers for clinical laboratory testing for male infertility? (Photo copyright: UCLA.)

Genetic Sequencing Used to Identify Bacteria in Semen Microbiome

Most of the microbes present in the semen microbiome originate in the glands of the male upper reproductive tract, including the testes, seminal vesicles and prostate, and contribute various components to semen. “Drifter” bacteria that comes from urine and the urethra can also accumulate in the fluid during ejaculation. Microbes from an individual’s blood, or his partner’s, may also aggregate in semen. It is unknown how these bacteria might affect health.

“I would assume that there are bacteria that are net beneficial, that maybe secrete certain kinds of cytokines or chemicals that improve the fertility milieu for a person, and then there are likely many that have negative side effects,” Eleswarapu told Scientific American.

The scientists used genetic sequencing to identify different bacteria species present within the semen microbiome. They found five species that were common among all the study participants. But men with more of the microbe Lactobacillus iners (L. iners) were likelier to have impaired sperm motility and experience fertility issues.

This discovery was of special interest to the team because L. iners is commonly found in the vaginal microbiome. In females, high levels of L. iners are associated with bacterial vaginosis and have been linked to infertility in women. This is the first study that found a negative association between L. iners and male fertility. 

The researchers plan to investigate specific molecules and proteins contained in the bacteria to find out whether they slow down sperm in a clinical laboratory situation.

“If we can identify how they exert that influence, then we have some drug targets,” Eleswarapu noted.

Targeting Bacteria That Cause Infertility

The team also discovered that three types of bacteria found in the Pseudomonas genus were present in patients who had both normal and abnormal sperm concentrations. Patients with abnormal sperm concentrations had more Pseudomonas fluorescens and Pseudomonas stutzeri and less Pseudomonas putida in their samples.

According to the federal National Institute of Child Health and Human Development (NICHD), “one-third of infertility cases are caused by male reproductive issues, one-third by female reproductive issues, and the remaining one-third by both male and female reproductive issues or unknown factors.” Thus, learning more about how the semen microbiome may be involved in infertility could aid in the development of drugs that target specific bacteria.

“Our research aligns with evidence from smaller studies and will pave the way for future, more comprehensive investigations to unravel the complex relationship between the semen microbiome and fertility,” said urologist Vadim Osadchiy, MD, a resident in the Department of Urology at UCLA and lead author of the study, in a UCLA news release

More research is needed. For example, it’s unclear if there are any links between the health of semen microbiome and other microbiomes that exist in the body, such as the gut microbiome, that cause infertility. Nevertheless, this research could lead to new biomarkers for clinical laboratory testing to help couples who are experiencing fertility issues. 

—JP Schlingman

Related Information:

Semen Microbiome Health May Impact Male Fertility

Semen Microbiota Are Dramatically Altered in Men with Abnormal Sperm Parameters

Semen Has Its Own Microbiome—and It Might Influence Fertility

How Common is Male Infertility, and What Are Its Causes?

UCLA’s Virtual Histology Could Eliminate Need for Invasive Biopsies for Some Skin Conditions and Cancers

Though the new technology could speed diagnoses of cancers and other skin diseases, it would also greatly reduce dermatopathology biopsy referrals and revenue

What effect would elimination of tissue biopsies have on dermatopathology and clinical laboratory revenue? Quite a lot. Dermatologists alone account for a significant portion of skin biopsies sent to dermatopathologists. Thus, any new technology that can “eliminate the need for invasive skin biopsies” would greatly reduce the number of histopathological referrals and reduce revenue to those practices.

Nevertheless, one such new technology may have been created by Ozcan Research Group in a proof-of-concept study they conducted at the University of California, Los Angeles (UCLA).

Called Virtual Histology, the technology applies artificial intelligence (AI) deep learning methods to reflectance confocal microscopy (RCM) images “to rapidly perform virtual histology of in vivo, label-free RCM images of normal skin structure, basal cell carcinoma, and melanocytic nevi with pigmented melanocytes, demonstrating similar histological features to traditional histology from the same excised tissue,” the UCLA scientists wrote in their study, published in the Nature peer-reviewed journal Light: Science and Applications.

Aydogan Ozcan, PhD

“What if we could entirely bypass the biopsy process and perform histology-quality staining without taking tissue and processing tissue in a noninvasive way? Can we create images that diagnosticians can benefit from?” asked Aydogan Ozcan, PhD (above), Chancellor’s Professor of Electrical and Computer Engineering at UCLA’s Samueli School of Engineering, one of the scientists who developed UCLA’s new virtual histology method, during an interview with Medical Device + Diagnostic Industry (MD+DI). (Photo copyright: Nature.)

Could Skin Biopsies be Eliminated?

The UCLA researchers believe their innovative deep learning-enabled imaging framework could possibly circumvent the need for skin biopsies to diagnose skin conditions.

“Here, we present a deep learning-based framework that uses a convolutional neural network to rapidly transform in vivo RCM images of unstained skin into virtually-stained hematoxylin and eosin-like images with microscopic resolution, enabling visualization of the epidermis, dermal-epidermal junction, and superficial dermis layers.

“This application of deep learning-based virtual staining to noninvasive imaging technologies may permit more rapid diagnoses of malignant skin neoplasms and reduce invasive skin biopsies,” the researchers added in their published study.

“This process bypasses several standard steps typically used for diagnosis, including skin biopsy, tissue fixation, processing, sectioning, and histochemical staining,” Aydogan Ozcan, PhD, Chancellor’s Professor of Electrical and Computer Engineering at UCLA’s Samueli School of Engineering, told Optics.org.

AI and Deep Learning in Dermatopathology

According to the published study, the UCLA team trained their neural network under an adversarial machine learning scheme to transform grayscale RCM images into virtually stained 3D microscopic images of normal skin, basal cell carcinoma, and pigmented melanocytic nevi. The new images displayed similar morphological features to those shown with the widely used hematoxylin and eosin (H&E) staining method.

“In our studies, the virtually stained images showed similar color contrast and spatial features found in traditionally stained microscopic images of biopsied tissue,” Ozcan told Photonics Media. “This approach may allow diagnosticians to see the overall histological features of intact skin without invasive skin biopsies or the time-consuming work of chemical processing and labeling of tissue.”

The framework covers different skin layers, including the epidermis, dermal-epidermis, and superficial dermis layers. It images deeper into tissue without being invasive and can be quickly performed.

“The virtual stain technology can be streamlined to be almost semi real time,” Ozcan told Medical Device + Diagnostic Industry (MD+DI). “You can have the virtual staining ready when the patient is wrapping up. Basically, it can be within a couple of minutes after you’re done with the entire imaging.”

Currently, medical professionals rely on invasive skin biopsies and histopathological evaluations to diagnose skin diseases and cancers. These diagnostic techniques can result in unnecessary biopsies, scarring, multiple patient visits and increased medical costs for patients, insurers, and the healthcare system.

Improving Time to Diagnosis through Digital Pathology

Another advantage of this virtual technology, the UCLA researchers claim, is that it can provide better images than traditional staining methods, which could improve the ability to diagnose pathological skin conditions and help alleviate human error.

“The majority of the time, small laboratories have a lot of problems with consistency because they don’t use the best equipment to cut, process, and stain tissue,” dermatopathologist Philip Scumpia, MD, PhD, Assistant Professor of Dermatology and Dermatopathology at UCLA Health and one of the authors of the research paper, told MD+DI.

“What ends up happening is we get tissue on a histology slide that’s basically unevenly stained, unevenly put on the microscope, and it gets distorted,” he added, noting that this makes it very hard to make a diagnosis.  

Scumpia also added that this new technology would allow digital images to be sent directly to the pathologist, which could reduce processing and laboratory times.

“With electronic medical records now and the ability to do digital photography and digital mole mapping, where you can obtain a whole-body imaging of patients, you could imagine you can also use one of these reflectance confocal devices. And you can take that image from there, add it to the EMR with the virtual histology stain, which will make the images more useful,” Scumpia said. “So now, you can track lesions as they develop.

“What’s really exciting too, is that there’s the potential to combine it with other artificial intelligence, other machine learning techniques that can give more information,” Scumpia added. “Using the reflectance confocal microscope, a clinician who might not be as familiar in dermatopathology could take images and send [them] to a practitioner who could give a more expert diagnosis.”

Faster Diagnoses but Reduced Revenue for Dermatopathologists, Clinical Labs

Ozcan noted that there’s still a lot of work to be done in the clinical assessment, validation, and blind testing of their AI-based staining method. But he hopes the technology can be propelled into a useful tool for clinicians.

“I think this is a proof-of-concept work, and we’re very excited to make it move forward with further advances in technology, in the ways that we acquire 3D information [and] train our neural networks for better and faster virtual staining output,” he told MD+DI.

Though this new technology may reduce the need for invasive biopsies and expedite the diagnosis of skin conditions and cancers—thus improving patient outcomes—what affect might it have on dermatopathology practices?

More research and clinical studies are needed before this new technology becomes part of the diagnosis and treatment processes for skin conditions. Nevertheless, should virtual histology become popular and viable, it could greatly impact the amount of skin biopsy referrals to pathologists, dermatopathologists, and clinical laboratories, thus diminishing a great portion of their revenue. 

—JP Schlingman

Related Information:

Virtual Histology Eliminates Need for Invasive Skin Biopsies

UCLA Deep-learning Reduces Need for Invasive Biopsies

AI Imaging Method Provides Biopsy-free Skin Diagnosis

Light People: Professor Aydogan Ozcan

Histology Process Bypasses Need for Biopsies, Enables Diagnoses

Reflection-Mode Virtual Histology Using Photoacoustic Remote Sensing Microscopy

Introduction to Reflectance Confocal Microscopy and Its Use in Clinical Practice

Biopsy-free In Vivo Virtual Histology of Skin Using Deep Learning

Can This New Tech Reduce the Need for Skin Biopsies?

Clinical Laboratories Should Be Aware of Potential Airborne Transmission of SARS-CoV-2, the Coronavirus That Causes COVID-19

‘Aerosol and Surface Stability’ study shows that the virus can remain infectious in aerosol form for hours and on surfaces for days

By now, clinical laboratory workers, microbiologists, and phlebotomists should be fully aware of the potential for transmission on surfaces of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the novel coronavirus that causes Coronavirus disease 2019 (COVID-19). The CDC’s latest Morbidity and Mortality Weekly Report revealed that the coronavirus “was identified on a variety of surfaces in cabins of both symptomatic and asymptomatic infected passengers up to 17 days after cabins were vacated on the Diamond Princess, but before disinfection procedures had been conducted,” the New York Post reported. That means the virus can survive on surfaces significantly longer than CDC previously believed.

But did you know a recent study published in the New England Journal of Medicine (NEJM) found that SARS-CoV-2 can also survive in the air for many hours, potentially allowing aerosolized transmission of the virus as well?

The NEJM study also showed that the stability of SARS-CoV-2 to survive on surfaces and in aerosolized form mirrors the stability of the SARS coronavirus (SARS-CoV) that caused the severe acute respiratory syndrome (SARS) outbreak of 2003.

This is critically important information for clinical laboratory professionals in open-space laboratories, phlebotomists collecting medical laboratory specimens, and frontline healthcare workers who come in direct contact with potentially infected patients. They should be aware of every potential COVID-19 transmission pathway.

Hospital infection control teams will be particularly interested in the possibility of airborne transmission, as they often visit infected patients and are tasked with tracking both the source of the infection as well as individuals who may be exposed to sick patients.

The NEJM study, titled “Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1” was conducted by scientists at the National Institute of Allergy and Infectious Diseases (NIAID), an agency of the US Department of Health and Human Services (HHS), the Centers for Disease Control and Prevention (CDC), Princeton University, and University of California, Los Angeles. The researchers concluded that SARS-CoV-2 remains in the air “up to three hours post aerosolization.”

FREE Webinar | What Hospital and Health System Labs Need to Know
About Operational Support and Logistics During the COVID-19 Outbreak

Wednesday, April 1, 2020 @ 1PM EDT — Register now

They also found the virus was detectable for up to four hours on copper and up to 24 hours on cardboard. The scientists concluded SARS-CoV-2 can remain on plastic and stainless-steel surfaces for two to three days, though the amount of the virus on surfaces decreases over time.

“Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days,” the study states. “These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, and they provide information for pandemic mitigation efforts.”

But Can COVID-19 Be Caught Through Air?

However, as noted in Wired, the researchers did not clearly state that infected persons can spread COVID-19 to others in the same airspace. Some experts have pointed out that there is a difference between a virus that can exist as an aerosol—defined as a liquid or solid suspended in gas under only limited conditions—and the measles virus, for example, which the CDC estimates “can live for up two hours in an airspace where the infected person has coughed or sneezed.”

“While the researchers tested how long the virus can survive in aerosols suspended in the air, they didn’t actually sample the air around infected people,” Wired noted. “Instead, they put the virus into a nebulizer and puffed it into a rotating drum to keep it airborne. Then, they tested how long the virus could survive in the air inside the drum.”

Neeltje van Doremalen, PhD, a research fellow at National Institutes of Health (NIH) and researcher at the NIAID’s Rocky Mountain Laboratories in Hamilton, Montana, who coauthored the NEJM study, cautioned against an overreaction to this latest research. On Twitter she wrote, “Important: we experimentally generated [COVID-19] aerosols and kept them afloat in a drum. This is not evidence of aerosol transmission.”

Nonetheless, the World House Organization (WHO) took note of the study’s findings and on March 16, 2020, announced it was considering “airborne precautions” for healthcare workers, CNBC reported in its coverage of a virtual press conference on March 16, 2020, led by Maria Van Kerkhove, MS, PhD, Technical Lead for WHO’s Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Task Force.

Van Kerkhove emphasized that health officials were monitoring results from other studies investigating how environmental conditions such as humidity, temperature, and ultraviolet light affect the disease and its ability to live on different surfaces.

“When you do an aerosol-generating procedure like in a medical care facility, you have the possibility to what we call aerosolize these particles, which means they can stay in the air a little bit longer,” said Maria Van Kerkhove, MS, PhD (above), Technical Lead for WHO’s Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Task Force during a virtual press conference, CNBC reported. “It’s very important that healthcare workers take additional precautions when they’re working on patients and doing these procedures,” she added. [Photo copyright: World Health Organization/YouTube.)

To Be or Not to Be an Airborne Pathogen

Stanley Perlman, MD, PhD, Professor of Microbiology and Immunology at the University of Iowa, believes aerosol transmission ultimately will be found not to play a large role in COVID-19 transmission.

“I think the answer will be, aerosolization occurs rarely, but not never,” Perlman told STAT. “You have to distinguish between what’s possible and what’s actually happening.”

In an NEJM editorial, Perlman expanded on those thoughts. “Although specific anti-coronaviral therapies are still in development, we now know much more about how to control such infections in the community and hospitals, which should alleviate some of this fear,” he wrote. “Transmission of [SARS-CoV-2] probably occurs by means of large droplets and contact and less so by means of aerosols and fomites, on the basis of our experience with SARS-CoV and MERS-CoV. Public health measures, including quarantining in the community as well as timely diagnosis and strict adherence to universal precautions in healthcare settings, were critical in controlling SARS and MERS. Institution of similar measures will be important and, it is hoped, successful in reducing the transmission of [SARS-CoV-2].”

An NIH news release announcing the SARS-CoV-2 stability study highlighted two additional observations:

  • “If the viability of the two coronaviruses is similar, why is SARS-CoV-2 resulting in more cases? Emerging evidence suggest that people infected with SARS-CoV-2 might be spreading virus without recognizing, or prior to recognizing, symptoms. That would make disease control measures that were effective against SARS-CoV-1 less effective against its successor.
  • In contrast to SARS-CoV-1, most secondary cases of virus transmission of SARS-CoV-2 appear to be occurring in community settings rather than healthcare settings. However, healthcare settings are also vulnerable to the introduction and spread of SARS-CoV-2, and the stability of SARS-CoV-2 in aerosols and on surfaces likely contributes to transmission of the virus in healthcare settings.”

Clearly, the scientific community has not agreed on aerosolization as a definite source of infection. Nevertheless, clinical laboratory workers in settings where potential exposure to SARS-CoV-2 exists should take precautions against airborne transmission until scientists can definitively determine whether this latest coronavirus can be acquired through the airborne transmission.

—Andrea Downing Peck

Related Information:

Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

Another Decade, Another Coronavirus

WHO Considers ‘Airborne Precautions’ for Medical Staff After Study Shows Coronavirus Can Survive in Air

Coronavirus Can Likely Remain Airborne for Some Time. That Doesn’t Mean We’re Doomed

New Coronavirus Stable for Hours on Surfaces

;