News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

University of Queensland Researches May Have Found a Universal Biomarker That Identifies Cancer in Various Human Cells in Just 10 Minutes!

This research could lead to a useful liquid biopsy test that would be a powerful new tool for clinical laboratories and anatomic pathologists

Cancer researchers have long sought the Holy Grail of diagnostics—a single biomarker that can quickly detect cancer from blood or biopsied tissue. Now, researchers in Australia may have found that treasure. And the preliminary diagnostic test they have developed reportedly can return results in just 10 minutes with 90% accuracy.

In a news release, University of Queensland researchers discussed identifying a “simple signature” that was common to all forms of cancer, but which would stand out among healthy cells. This development will be of interest to both surgical pathologists and clinical laboratory managers. Many researchers looking for cancer markers in blood are using the term “liquid biopsies” to describe assays they hope to develop which would be less invasive than a tissue biopsy.

“This unique nano-scaled DNA signature appeared in every type of breast cancer we examined, and in other forms of cancer including prostate, colorectal, and lymphoma,” said Abu Sina, PhD, Postdoctoral Research Fellow at the Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland (UQ), in the news release.

“We designed a simple test using gold nanoparticles that instantly change color to determine if the three-dimensional nanostructures of cancer DNA are present,’ said Matt Trau, PhD, Professor of Chemistry at the University of Queensland, and Deputy Director and Co-Founder of UQ’s AIBN, in the news release.

The team’s test is preliminary, and more research is needed before it will be ready for Australia’s histopathology laboratories (anatomic pathology labs in the US). Still, UQ’s research is the latest example of how increased knowledge of DNA is making it possible for researchers to identify new biomarkers for cancer and other diseases.

“We certainly don’t know yet whether it’s the holy grail for all cancer diagnostics, but it looks really interesting as an incredibly simple universal marker of cancer, and as an accessible and inexpensive technology that doesn’t require complicated lab-based equipment like DNA sequencing,” Trau added.

Such a diagnostic test would be a boon to clinical laboratories and anatomic pathology groups involved in cancer diagnosis and the development of precision medicine treatments.

One Test, 90% Accuracy, Many Cancers

The UQ researchers published their study in the journal Nature Communications. In it, they noted that “Epigenetic reprogramming in cancer genomes creates a distinct methylation landscape encompassing clustered methylation at regulatory regions separated by large intergenic tracks of hypomethylated regions. This methylation landscape that we referred to as ‘Methylscape’ is displayed by most cancer types, thus may serve as a universal cancer biomarker.”

While methyl patterning is not new, the UQ researchers say they were the first to note the effects of methyl pattern in a particular solution—water. With the aid of transmission electron microscopy, the scientists saw DNA fragments in three-dimensional structures in the water. But they did not observe the signature in normal tissues in water.

Methylation are marks that indicate whether pieces of DNA should be read,” Dino DiCarlo, PhD, Professor in the Department of Bioengineering and Biomedical Engineering, University of California Los Angeles (UCLA) and Director of Cancer Nanotechnology at UCLA’s Jonsson Comprehensive Cancer Center, told USA Today.


“To date, most research has focused on the biological consequences of DNA Methylscape changes, whereas its impact on DNA physicochemical properties remains unexplored,” UQ scientists Matt Trau, PhD (left), Abu Sina, PhD (center), and Laura Carrascosa (right), wrote in their study. “We exploit these Methylscape differences to develop simple, highly sensitive, and selective electrochemical or colorimetric one-step assays for the detection of cancer.” (Photo copyright: University of Queensland.)

Their test averaged 90% accuracy during the testing of 200 human cancer samples. Furthermore, the researchers found the DNA structure to be the same in breast, prostate, and bowel cancers, as well as lymphomas, noted The Conversation.

“We find that DNA polymeric behavior is strongly affected by differential patterning of methylcytosine leading to fundamental differences in DNA solvation and DNA-gold affinity between cancerous and normal genomes,” the researchers wrote in NatureCommunications.“We exploit these methylscape differences to develop simple, highly sensitive, and selective electrochemical or one-step assays for detection of cancer.”

Next Steps for the “Gold Test”

“This approach represents an exciting step forward in detecting tumor DNA in blood samples and opens up the possibility of a generalized blood-based test to detect cancer, Ged Brady, PhD, Cancer Research UK Manchester Institute, told The Oxford Scientist. “Further clinical studies are required to evaluate the full clinic potential of the method.”

Researchers said the next step is a larger clinical study to explore just how fast cancer can be detected. They expressed interest in finding different cancers in body fluids and at various stages. Another opportunity they envision is to use the cancer assay with a mobile device.

DiCarlo told USA Today that such a mobile test could be helpful to clinicians needing fast answers for people in rural areas. However, he’s also concerned about false positives. “You don’t expect all tumors to have the same methylation pattern because there’s so many different ways that cancer can develop,” he told USA Today. “There are some pieces that don’t exactly align logically.”

The UQ researchers have produced an intriguing study that differs from other liquid biopsy papers covered by Dark Daily. While their test may need to be used in combination with other diagnostic tests—MRI, mammography, etc.—it has the potential to one day be used by clinical laboratories to quickly reveal diverse types of cancers.  

—Donna Marie Pocius

Related Information:

Nano-Signature Discovery Could Revolutionize Cancer Diagnosis

Epigentically Reprogrammed Methylation Landscape Drives the DNA Self-Assembly and Serves as a Universal Cancer Biomarker

One Test to Diagnose Them All: Researchers Exploit Cancers’ Unique DNA Signature

Cancer Researchers in Australia Develop Universal Blood Test

Universal 10-Minute Cancer Test in Sight

A 10-Minute, Universal Blood Test for Cancer

China Struggling to Keep Up with Demand for Anatomic Pathologists

As the still-developing pathology profession in China struggles to meet demand, 3rd-party medical laboratory groups, and university/industry arrangements, find opportunities to fill the needs of China’s hospitals

China is currently facing a severe shortage of anatomic pathologists, which blocks patients’ access to quality care. The relatively small number of pathologists are often overworked, even as more patients want access to specialty care for illnesses. Some hospitals in China do not even have pathologists on staff. Thus, they rely on understaffed anatomic pathology departments at other facilities, or they use imaging only for diagnoses.

To serve a population of 1.4 billion people, China has only 29,000 hospitals with seven million beds. Among the healthcare providers, there just 20,000 licensed pathologists, according to the Chinese Pathologist Association. By contrast, recent statistics show that the United States has a population of 326 million people with approximately 18,000 actively practicing pathologists and 5,815 registered hospitals with 898,000 beds.

The largest pathology department in China is at Fudan University Shanghai Cancer Center (FUSCC), a hospital with 1,259 beds in operation and 50 pathologists on staff. News accounts say those pathologists are expected to process 40,000 cases this year, surpassing their 2016 workload by 5,000 cases. The FUSCC pathologists are supported by a small number of supplemental personnel, which include assistants, technicians, and visiting clinicians.

Qifeng Wang, a pathologist at FUSCC, indicated that most leading hospitals in China with average or above-average pathology staffing are experiencing similar barriers as FUSCC. Large hospitals, such as:

·       Cancer Hospital at the Chinese Academy of Medical Sciences;

·       Beijing Cancer Hospital;

·       Peking Union Medical College Hospital;

·       West China Hospital; and

·       First Affiliated Hospital of Sun Yat-sen University also deal with similar staffing shortages and excessive workloads for their pathology departments.

“The diagnostic skill level at FUSCC is not that different from that in the U.S.,” Wang told Global HealthCare Insights (GHI). He added, however, that the competent skill level of their staffers is not sufficient to handle the internal workload at FUSCC plus the additional workload referred to them from other facilities.

Though not at the top of the list, as the graphic above illustrates, China is preceded only by Uganda, Sudan, and Malaysia for the number of patients per anatomic pathologist. China has approximately one pathologist per 74,000 people. By contrast, the United States has one pathologist for every 19,000 people. Studies indicate that, globally, the number of pathologists each year is shrinking. (Image copyright: Clinical Laboratory Products)

Patients Forced to Migrate to Receive Diagnoses

Because there are so few pathologists in the vast, heavily-populated country, many Chinese patients travel to major cities to increase their chances of obtaining reliable diagnosis and care, which further overwhelms the system.

The 1,530-bed Yunnan Cancer Hospital in the western city of Kunming handles more than 4,000 cases forwarded to them from other institutions annually. The 14 pathologists at the center also sometimes travel to rural communities to provide anatomic pathology services.

“It’s the complex cases that make it hard to keep up with our workload” said Yonglin Wang, an anatomic pathologist at the Yunnan Cancer Hospital, in the GHI article. The pathologists at Yunnan often refer their more demanding cases to larger hospitals to ensure the best analysis and outcomes for the patients.

Workload, Low Pay, and Lawsuits Discourage Pathology Enrollments

A logical solution to the critical shortage of pathologists in China would be to increase the number of people choosing the profession. However, medical students in the country tend to steer clear of surgical pathology due to the excessive workload, lower pay and status, and the threat of lawsuits relating to improper diagnoses.

To address the demand, a private pathology industry is emerging in China. There are currently more than 300 private medical laboratories located throughout the country. The largest of these businesses is KingMed Diagnostics in Guangzhou. According to their website, the 3rd-party medical laboratory group focuses on medical testing, clinical trials, food and hygiene testing, and scientific research. They examine more than 4,000 pathology cases annually, concentrating on:

·       Immunohistochemistry;

·       Specialized staining; and,

·       Ultrastructural and molecular pathological diagnosis.

American Colleges Partnering with Chinese Laboratory Groups

Organizations from other countries, including the United States, also are entering the pathology industry in China.

In 2014, the UCLA Department of Pathology and Laboratory Medicine partnered with Chinese firm Centre Testing International Corporation (CTI) to operate a clinical laboratory in Shanghai. In the endeavor, pathologists from UCLA trained Chinese lab specialists on the proper interpretation of tests at the 25,000 square-foot facility. (See The Dark Report, “UCLA, Centre to Open Lab In China to Offer High Quality Testing,” May 19, 2014.)

“Because pathology has a history of being undervalued in China, the country has a shortage of pathologists trained to diagnose and interpret complex test results in specialized fields of medicine,” said Scott Binder, MD, Senior Vice Chair at UCLA Health in a statement. “Our partnership gives CTI and UCLA the opportunity to save lives by changing that.”

“Our collaboration will offer the people of China oncology, pathology, and laboratory medicine services they can trust. Many of these services are not largely available in China and are needed by physicians and healthcare providers to accurately diagnose and treat their patients,” stated Dr. Sangem Hsu, President of CTI in the UCLA statement.

As the need for pathologists increases worldwide, many countries will struggle to fulfill the demand. This may create even more opportunities for enterprising medical laboratory organizations and anatomic pathology groups who have the wherewithal and determination to make a difference overseas.

—JP Schlingman

Related Information:

China Grapples with a Pathologist Shortage

In China, More Irate Patients Violently Attack Doctors over Wrong Diagnoses and Poor Healthcare

UCLA Launches Joint Venture with Chinese Firm to Open Sophisticated Lab in Shanghai

The Pathologist Workforce in the United States

UCLA, Centre to Open Lab In China to Offer High Quality Testing

Digital Pathology Gives Rise to Computational Pathology

Pathologist Workforce in the United States: I. Development of a Predictive Model to Examine Factors Influencing Supply

Anatomic Pathology in China Is a Booming Growth Industry

Digital Pathology Enables UCLA-China Lab Connection

Lab Testing, Pathology is Fast-growing in China

 

UCLA’s Ozcan Labs Develops Portable Smartphone DNA Detection System That Performs as well as Clinical Laboratory Testing

Mobile point-of-care (POC) smartphone-based nucleic acid assay allows for quick turn arounds and accurate information in any healthcare setting, including resource limited and remote environments 

DNA detection might soon be accomplished with the use of a smartphone. That’s the goal of a research effort at the University of California Los Angeles (UCLA). If this effort succeeds, it would give medical laboratories a new tool to use in genetic testing.

Clinical laboratory equipment is becoming more effective even as it shrinks in size and cost. One such device has been developed by Ozcan Laboratory Group, headed by UCLA professor Aydogan Ozcan, PhD. It is a portable, smartphone-based mobile lab with sensitivity and reliability on par with large-scale medical laboratory-based equipment.

Ozcan Lab’s portable DNA detection system, according to a UCLA press release, “leverages the sensors and optics of cellphones” and adapts them to read and report the presence of DNA molecules. The sensor uses a new detector dye mixture and reportedly produces a signal that is 10 to 20 times brighter than previous detector dye outputs.

This new system improves upon the optical detection abilities of current point-of-care nucleic acid tests (POCTs) and, according to a study published in the American Chemical Society’s ACS Nano, the device is able to “retain the same robust standards of benchtop lab-based tests.”

Go Anywhere Technology Improves POC Testing

Nucleic acid detecting assays are crucial tools anatomic pathologists use to identify pathogens, detect residual disease markers, and identify treatable mutations of diseases. Due to the need for amplification of nucleic acids for detection with benchtop equipment, there are challenges associated with providing rapid diagnostics outside the clinical laboratory.

The device developed by Ozcan Labs (above) is a “field-portable and cost-effective mobile-phone-based nucleic acid amplification and readout platform [that] is broadly applicable to other real-time nucleic acid amplification tests by similarly modulating intercalating dye performance. It is compatible with any fluorescence-based assay that can be run in a 96-well microplate format, making it especially valuable for POC and resource-limited settings.” (Caption and photo copyright: American Chemical Society.)

Using the new mobile POC nucleic acid testing system developed by Ozcan et al, pathologists can effectively step away from the lab to perform rapid POC testing and accelerated diagnostics onsite, rather than needing to transport materials to and from a central laboratory. The mobile testing assay enables pathologists to carry a medical laboratory with them into the field, or into limited-resource or decentralized testing environments, without sacrificing quality or sensitivity. And according to the ACS Nano article, at a relatively low-cost compared to benchtop nucleic acid testing equipment.

In an article published in Future Medicine, Ozcan and Hatice Ceylan Koydemir, PhD, a post-doctoral researcher in electrical engineering at UCLA, comment on the growing interest in mobile POC diagnostics, stating that smartphone-based devices and platforms have the potential “to be used for early detection and prevention of a variety of health problems.”

According to the article, smartphone-based sensing and imaging platforms have been developed to:

  • Analyze chemicals and biological specimens;
  • Perform advanced cytometry and bright-field/fluorescence microscopy;
  • Detect bacterial contamination;
  • Image nano-sized specimens;
  • Detect antimicrobial drug resistance; and
  • Analyze enzyme-linked immunosorbent assay (ELISA)-based testing.

Smartphones, according to Ozcan and Koydemir, have been adapted to a range of biomedical measurement tools, “have the potential to transform traditional uses of imaging, sensing, and diagnostic systems, especially for point-of-care applications and field settings,” and can provide speedy results.

A ‘Highly Stable’ and Sensitive System

The proof-of-concept study of Ozcan Lab’s new smartphone-based detection system and new detector dye mixture was led by Janay E. Kong, PhD in bioengineering at UCLA, with the help of Ozcan and fellow professors Dino Di Carlo, PhD, professor of bioengineering and mechanical and aerospace engineering at UCLA, and Omai Garner, PhD, associate professor of clinical microbiology at the David Geffen School of Medicine at UCLA.

According to an article in Bioscience Technologies, the new smartphone DNA detection system addresses issues with detection of light emitted from intercalator dyes, which are normally “too subtle and unstable for regular cellphone camera sensors.” The new system uses loop-mediated isothermal amplification (LAMP) to amplify DNA in connection with a newly developed dye that uses hydroxynaphthol blue (HNB) as an indicator.

The inclusion of HNB into the dye, according to the original research study, “yields 20 times higher fluorescent signal change over background compared to current intercalating dyes,” making the results bright enough for smartphone camera sensors without “interfering with the nucleic acid amplification process.” The original study reports that the digital LAMP system and use of the HNB intercalating dye, in fact, provided “significantly enhanced performance compared to a benchtop reader with standard LAMP conditions.”

Ozcan labs shows no signs of slowing down their development of mobile POC diagnostic devices. The development of these smartphone-based tools may provide unique and much-needed equipment for clinical pathologists given the rising interest in mobile healthcare worldwide.

Amanda Warren

Related Information:

UCLA Researchers Make DNA Detection Portable, Affordable Using Cellphones

Mobile Phones Create New Opportunities for Microbiology Research and Clinical Applications

Highly Stable and Sensitive Nucleic Acid Amplification and Cell-Phone-Based Readout

Cellphone System Makes DNA Detection Affordable and Portable

UCLA Device Enables Diagnosis of Antimicrobial Resistance in Any Setting; Could Save Lives Lost to Antimicrobial Resistant Bacteria

UCLA Researchers Develop Lens-Free Smartphone Microscope, Pathologists May Be Able to Take the Clinical Pathology Laboratory Just About Anywhere

Smartphone “Dongle” Achieves Capabilities of Big Clinical Laboratory Analyzers: Diagnoses Three Diseases at Once from Single Drop of Blood

New Fast, Inexpensive, Mobile Device Accurately Identifies Healthcare-Acquired Infections and Communicates Findings to Doctors’ Smartphones and Portable Computers

Pathologists and Researchers Predict Development Trajectory for Biomarker-based Molecular Diagnostics in Support of Translational Medicine

Tiny, Simple-to-Use Lensless Microscope Might Soon Find a Place in Pathology

UCLA Device Enables Diagnosis of Antimicrobial Resistance in Any Setting; Could Save Lives Lost to Antimicrobial Resistant Bacteria

In studies, the automated microbial susceptibility testing device for smartphone performed with 98.2% accuracy, meeting FDA criteria

Imagine doing antimicrobial susceptibility testing outside a clinical laboratory. That’s the goal of researchers on the West Coast who are developing a smartphone-based diagnostic device with the capability of performing this type of point-of-care testing (POCT).

This new mobile POCT device is under development at the University of California-Los Angeles (UCLA). It promises to bring antimicrobial susceptibility testing—a routine procedure in the most medical laboratories—to remote, resource-limited areas of the world.

The device, which attaches directly to a smartphone, contains an automated diagnostic test reader that examines the body’s antimicrobial resistance, according to a UCLA news release. (more…)

Compressive Sensing Could Dramatically Reduce Time to Process Complex Clinical Laboratory Tests Involving Huge Amounts of Data and Lower the Cost of Tests

Experts believe compressive sensing could find wide application in medical laboratory and pathology testing, particularly where large amounts of data are generated

Pathologists and medical laboratory managers may soon be working with a new tool in their labs. It is called “Compressive Sensing” (CS) and it is an innovative mathematical approach that quickly and efficiently gets an answer by sampling large volumes of a data.

Currently compressive sensing is used in medical imaging technology. CS reduces radiation and speeds up imaging diagnostics. Some experts familiar with this technology believe that it can be used in those clinical laboratories that are working with new diagnostic technologies that generate large volumes of data. CS could dramatically reduce times to analyze results and lower the cost of expensive tests like whole-genome sequencing. (more…)

;