News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

US and UK Researchers Simultaneously Develop New Tests to Detect Prostate Cancer

Though still in trials, early results show tests may be more accurate than traditional clinical laboratory tests for detecting prostate cancer

Within weeks of each other, different research teams in the US and UK published findings of their respective efforts to develop a better, more accurate clinical laboratory prostate cancer test. With cancer being a leading cause of death among men—second only to heart disease according to the Centers for Disease Control and Prevention (CDC)—new diagnostics to identify prostate cancer would be a boon to precision medicine treatments for the deadly disease and could save many lives.

Researchers at the University of East Anglia (UEA) in Norwich, England, were working to improve the accuracy of the widely-used and accepted prostate-specific antigen (PSA) test. By contrast, researchers at Cedars-Sinai Cancer in Los Angeles, pursued a new liquid biopsy approach to identifying prostate cancer that uses nanotechnology.

Thus, these are two different pathways toward the goal of achieving earlier, more accurate diagnosis of prostate cancer, the holy grail of prostate cancer diagnosis.

Dmitry Pshezhetskiy, PhD

“There is currently no single test for prostate cancer, but PSA blood tests are among the most used, alongside physical examinations, MRI scans, and biopsies,” said Dmitry Pshezhetskiy, PhD (above), Professorial Research Fellow at University of East Anglia and one of the authors of the UEA study. “However, PSA blood tests are not routinely used to screen for prostate cancer, as results can be unreliable. Only about a quarter of people who have a prostate biopsy due to an elevated PSA level are found to have prostate cancer. There has therefore been a drive to create a new blood test with greater accuracy.” With the completion of the US and UK studies, clinical laboratories may soon have a new diagnostic test for prostate cancer. (Photo copyright: University of East Anglia.)

East Anglia’s Research into a More Accurate Blood Test

Scientists at the University of East Anglia (UEA) worked with researchers from Imperial College in London, Imperial College NHS Trust, and Oxford BioDynamics to develop a new precision medicine blood test that can detect prostate cancer with greater accuracy than current methods.

The epigenetic blood test they developed, called Prostate Screening EpiSwitch (PSE), can identify cancer-specific chromosome conformations in blood samples. The test works in tandem with the standard prostate-specific antigen (PSA) blood test to diagnose prostate cancer, according to an Oxford BioDynamics press release.

The researchers evaluated their test in a pilot study involving 147 patients. They found their testing method had a 94% accuracy rate, which is higher than that of PSA testing alone. They discovered their test significantly improved the overall detection of prostate cancer in men who are at risk for the disease. 

“When tested in the context of screening a population at risk, the PSE test yields a rapid and minimally invasive prostate cancer diagnosis with impressive performance,” Dmitry Pshezhetskiy, PhD, Professorial Research Fellow at UEA and one of the authors of the study told Science Daily. “This suggests a real benefit for both diagnostic and screening purposes.”

The UK scientists hope their test can eventually be used in everyday clinical practice as there is a need for a highly accurate method for prostate cancer screening that does not subject patients to unnecessary, costly, invasive procedures. 

The UEA researchers published their findings in the peer-reviewed journal Cancers, titled, “Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection.”

Cedars-Sinai’s Research into Nanotechnology Cancer Testing

Researchers from Cedars-Sinai Cancer took a different approach to diagnosing prostate cancer by developing a nanotechnology-based liquid biopsy test that detects the disease even in microscopic amounts.  

Their test isolates and identifies extracellular vesicles (EVs) from blood samples. EVs are microscopic non-reproducing protein and genetic material shed by all cells. Cedars-Sinai’s EV Digital Scoring Assay accurately extracts EVs from blood and analyzes them faster than similar currently available tests.

“This research will revolutionize the liquid biopsy in prostate cancer,” said oncologist Edwin Posadas, MD, Medical Director of the Urologic Oncology Program and co-director of the Experimental Therapeutics Program in Cedars-Sinai Cancer in a press release. “The test is fast, minimally invasive and cost-effective, and opens up a new suite of tools that will help us optimize treatment and quality of life for prostate cancer patients.”

The researchers tested blood samples from 40 patients with prostate cancer. They found that their EV test could distinguish between cancer localized to the prostate and cancer that has spread to other parts of the body.

Microscopic cancer deposits, called micrometastases, are not always detectable, even with advanced imaging methods. When these deposits spread outside the prostate area, focused radiation cannot prevent further progression of the disease. Thus, the ability to identify cancer by locale within the body could lead to new precision medicine treatments for the illness.

“[The EV Digital Scoring Assay] would allow many patients to avoid the potential harms of radiation that isn’t targeting their disease, and instead receive systemic therapy that could slow disease progression,” Posadas explained.

The Cedars-Sinai researchers published their findings in Nano Today, titled, “Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs.”

Other Clinical Laboratory Tests for Prostate Cancer Under Development

According to the American Cancer Society, the number of prostate cancer cases is increasing. One out of eight men will be diagnosed with the illness during his lifetime. Thus, developers have been working on clinical laboratory tests to accurately detect the disease and save lives for some time.

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily reported on a urine test also developed by scientists at the University of East Anglia that clinical laboratories can use to not only accurately diagnose prostate cancer but also determine whether it is an aggressive form of the disease.

And in “UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer ,” we outlined how researchers at the University of Pittsburgh Medical Center (UPMC) working with Ibex Medical Analytics in Israel had developed an artificial intelligence (AI) algorithm for digital pathology that can accurately diagnose prostate cancer. In the initial study, the algorithm—dubbed the Galen Prostate AI platform—accurately detected prostate cancer with 98% sensitivity and 97% specificity.

More research and clinical trials are needed before the new US and UK prostate cancer testing methods will be ready to be used in clinical settings. But it’s clear that ongoing research may soon produce new clinical laboratory tests and diagnostics for prostate cancer that will steer treatment options and allow for better patient outcomes.  

—JP Schlingman

Related Information:

The New Prostate Cancer Blood Test with 94 Percent Accuracy

Circulating Chromosome Conformation Signatures Significantly Enhance PSA Positive Predicting Value and Overall Accuracy for Prostate Cancer Detection

Invention: A Blood Test to Unlock Prostate Cancer Mysteries

Prostate Cancer Extracellular Vesicle Digital Scoring Assay: A Rapid Noninvasive Approach for Quantification of Disease-relevant mRNAs

Could a Urine Test Detect Pancreatic and Prostate Cancer? Study Shows 99% Success Rate

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

UPMC Researchers Develop Artificial Intelligence Algorithm That Detects Prostate Cancer with ‘Near Perfect Accuracy’ in Effort to Improve How Pathologists Diagnose Cancer

New Monkeypox Challenges Abound for Public Health Agencies as Virus Travels Beyond Traditional Hotspots

Officials also worry about diminishing smallpox vaccinations, which offered people protection against the infectious disease

Monkeypox challenges from the current outbreak have dogged public health agencies even though the disease was first identified more than 50 years ago. That is because the virus has found new avenues of infection. These developments will be relevant for the nation’s clinical laboratories, which are often the first healthcare providers to confirm a suspected case is positive for monkeypox and notify a public health laboratory about the positive test result.

The latest monkeypox numbers from the federal Centers for Disease Control and Prevention (CDC) indicate that, as of September 6, the US has identified 19,962 cases in the 2022 outbreak, while worldwide the case number is 52,037.

In “When It Comes to Monkeypox Testing, Clinical Laboratories Should Be Aware of Five Significant Developments,” Dark Daily wrote about steps being taken to identify and control infections in America as well as trends in medical laboratory testing for monkeypox. This included reports of phlebotomists refusing to draw monkeypox blood samples and how social stigma surrounding the disease can affect who gets a medical laboratory test.

And in “Medical Laboratories Respond to Monkeypox Outbreak Using CDC-Developed Diagnostic Test,” we wrote how medical laboratories in the US are ramping up their efforts to respond to monkeypox and about a CDC-developed test designed to detect Orthopoxviruses, the family that includes the monkeypox virus.

Workers at clinical laboratories and anatomic pathology groups will gain from understanding why monkeypox has spread beyond its traditional geography.

Bodhraj Acharya, PhD

“Monkeypox symptoms include swollen lymph nodes, fever, and body aches that result in red bumps on hands, feet, mouth, and genitals,” Bodhraj Acharya, PhD (above), of the Laboratory Alliance of Central New York, told Dark Daily. “It spreads by close contact, respiratory droplets, lesions, and bodily fluids.” Clinical laboratories engaged in testing for monkeypox will want to stay alert to patients presenting with such symptoms. (Photo copyright: Laboratory Alliance of Central New York.)

African Public Health Officials Saw New Monkeypox Challenges Coming

Researchers and public health experts have been perplexed about how and why the latest monkeypox outbreak has occurred so aggressively beyond its origin in rural Central Africa.

“Monkeypox is caused by the pox virus, with a close resemblance to smallpox,” said Bodhraj Acharya, PhD, Manager of Chemistry and Referral Testing at the Laboratory Alliance of Central New York, in a conversation with Dark Daily. “Unlike COVID-19, this is an old enemy which has roots in the 1970s from Congo, when the disease was erratically endemic in Africa.”

According to the World Health Organization (WHO), most monkeypox cases since 1970 have been reported from rural rainforest regions in Central and Western Africa.

Thus, a monkeypox outbreak occurring in Europe and the United States in 2022 has puzzled virologists and microbiologists because it does not follow the historical pattern of the virus’ spread. For example, the first monkeypox case in the US arrived in May from a Massachusetts patient who had traveled to Canada, a state press release noted.

Adesola Yinka-Ogunleye, an epidemiologist at the Nigeria Center for Disease Control and doctoral researcher at the Institute of Global Health at University College London, told the journal Nature that a 2017 outbreak in Nigeria served as a watershed moment in her understanding of monkeypox.

Before the Nigerian outbreak, the virus rose from rural areas where hunters came in close contact with animals. The illness resulted in lesions on the face, hands, and feet, Nature wrote of Yinka-Ogunleye’s recollections.

However, after 2017, she and other epidemiologists warned peers that the virus was spreading in new ways and in urban settings. For example, infected people sometimes had genital lesions, suggesting that the virus might spread through human sexual contact.

Now, in 2022, “the world is paying the price for not having responded adequately” in 2017, Yinka-Ogunleye told Nature.

Lack of Smallpox Vaccination Increases Monkeypox Challenges

The waning effects of smallpox vaccinations, which ended in 1980 after smallpox was basically eradicated from the world, may have opened the door for monkeypox to spread earlier this year. Smallpox vaccines provided some protection against monkeypox, but by now three generations of people have not received smallpox inoculations.

“Eyebrows were raised when multiple cases of monkeypox were reported from various non-endemic countries starting in May of 2022,” Acharya said. “Due to genetic similarity, smallpox vaccination provided some cross-protection, but the termination of smallpox vaccination could have provided ground for the recent insurgence and spread of monkeypox.”

Trying to jumpstart a new monkeypox vaccination campaign on the heels of COVID-19 shots may be met with resistance from a virus-weary public. But other options at preventing the current spread of monkeypox may present challenges as well, such as trying to curtail sexual activity among affected population, the BBC reported.

“The easiest way to prevent it is to close down all highly active sexual networks for a couple of months until it goes away, but I don’t think that will ever happen. Do you?” Paul Hunter, PhD, Professor of Medicine at the University of East Anglia in Norwich, England, told the BBC.

For medical laboratory workers and others who may find themselves testing for the disease in the future, the biggest lessons from current monkeypox challenges are twofold: The virus has invaded new geography, and discontinued smallpox vaccination campaigns may have left younger people exposed to monkeypox. 

Scott Wallask

Related Information:

Monkeypox: Can We Still Stop the Outbreak?

Monkeypox in Africa: The Science the World Ignored

CDC: 2022 Outbreak Cases and Data

When It Comes to Monkeypox Testing, Clinical Laboratories Should Be Aware of Five Significant Developments

Medical Laboratories Respond to Monkeypox Outbreak Using CDC-Developed Diagnostic Test

Swedish Researchers Develop Urine Test That Can Identify Asthma Types and Their Severity, Potentially Leading to Improved Precision Medicine Diagnostics

The study ‘shows that measurement using a urine test provides improved accuracy relative to other measurement methods, for example certain kinds of blood tests,’ a KI news release states

Researchers at the Karolinska Institute (KI) in Sweden have developed a non-invasive urine-based test that can identify what type of asthma a patient has and its severity. If developed into a clinical laboratory diagnostic, such a test also could give clinicians a better idea of what treatment is more likely to be effective—a core goal of precision medicine.

Another benefit of this methodology is that it is a non-invasive test. Should further studies conclude that this urine-based test produces accurate results acceptable for clinical settings, medical laboratories would certainly be interested in offering this assay, particularly for use in pediatric patients who are uncomfortable with the venipunctures needed to collect blood specimens. Also, given the incidence of asthma in the United States, there is the potential for a urine-based asthma test to generate a substantial number of test requests.

The objective of the study, according to the Karolinska Institute researchers, was “To test if urinary eicosanoid metabolites can direct asthma phenotyping.” The team used mass spectrometry to measured certain lipid biomarkers (prostaglandins and leukotrienes), which are known to play a key role in the inflammation that occurs during asthma attacks.

According to a KI news release, “The study is based on data from the U-BIOPRED study (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes), which was designed to investigate severe asthma. The study included 400 participants with severe asthma, which often requires treatment with corticosteroid tablets, nearly 100 individuals with milder forms of asthma, and 100 healthy control participants.”

The Karolinska Institute researchers published their study in the American Journal of Respiratory and Critical Care Medicine.

Johan Kolmert, PhD

“We discovered particularly high levels of the metabolites of the mast cell mediator prostaglandin D2 and the eosinophil product leukotriene C4 in asthma patients with what is referred to as Type 2 inflammation. Using our methodology, we were able to measure these metabolites with high accuracy and link their levels to the severity and type of asthma,” said Johan Kolmert, PhD (above), a post-doctoral researcher at the Institute of Environmental Medicine, Karolina Institute, and first author of the study, in the KI news release. If perfected, such accuracy could lead to effective precision medicine clinical laboratory tests. (Photo copyright: Karolinska Institute.)

More Accurate Testing Could Lead to Biomarker-guided Precision Medicine

In the US alone, 25,131,132 people currently suffer from asthma, about five million of which are children under the age of 18, according to 2019 CDC statistics. The World Health Organization (WHO) reports that worldwide, “Asthma affected an estimated 262 million people in 2019 and caused 461,000 deaths.”

People with mild asthma may have good success using steroid inhalers. However, for those with moderate to severe asthma where inhalers are not effective, oral corticosteroids may also be necessary. But corticosteroids have been associated with high blood pressure and diabetes, among other negative side effects.

“To replace corticosteroid tablets, in recent times several biological medicines have been introduced to treat patients with Type 2 inflammation characterized by increased activation of mast cells and eosinophils,” said Sven-Erik Dahlén, Professor at the Institute of Environmental Medicine, Karolinska Institute, in the news release.

Currently, there are no simple tests that show what type of asthma a patient has. Instead, clinicians rely on lung function tests, patient interviews, allergy tests, and blood tests.

Other Non-invasive Urine-based Diagnostic Tests

In “University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test,” Dark Daily recently reported on a different urine-based prostate cancer test developed in the UK that University of East Anglia (UEA) Norwich Medical School researchers say can “determine the aggressiveness of the disease” and potentially “reduce the number of unnecessary prostate cancer biopsies by 32%.”

Earlier this year, researchers at Brigham and Women’s Hospital and Exosome Diagnostics in Massachusetts investigated a non-invasive, urine-based test for transplant rejection. According to a news release, “Patients can spend up to six years waiting for a kidney transplant. Even when they do receive a transplant, up to 20% of patients will experience rejection.”

“If rejection is not treated, it can lead to scarring and complete kidney failure. Because of these problems, recipients can face life-long challenges,” said Jamil Azzi, MD, Director of the Kidney Transplantation Fellowship Program at Brigham and Women’s Hospital, and Associate Professor of Medicine at Harvard School of Medicine. “Our goal is to develop better tools to monitor patients without performing unnecessary biopsies. We try to detect rejection early, so we can treat it before scarring develops,” he said.

Detecting Bladder Cancer with Urine Testing

Another condition where urine tests are being investigated is bladder cancer. An article in Trends in Urology and Men’s Health states, “Several point-of-care urine tests have been developed to help identify patients who may be at higher risk of bladder cancer.” Those tests could have the potential for use in primary care, which could mean fewer people would need invasive, painful, and risk-carrying cystoscopies.

“New tests to help identify hematuria patients who are at a higher risk of cancer would help to improve the diagnostic pathway, reduce the number diagnosed by emergency presentation, lessen the burden on urology services, and spare those who do not have cancer an invasive and costly examination, such as cystoscopy,” the article’s authors wrote.

These urine-based tests are still under investigation by various research teams and more research is needed before clinical trials can be conducted and the tests can be submitted for regulatory approval. Though still in the early stages of development, urine-based diagnostic testing represents far less invasive, and therefore safer, ways to identify and treat various diseases.

Studies into how the elements in urine might be used as biomarkers for clinical laboratory tests may lead to improved non-invasive precision medicine diagnostics that could save many lives.

—Dava Stewart

Related Information

Urinary Leukotriene E4 and Prostaglandin D2 Metabolites Increase in Adult and Childhood Severe Asthma Characterized by Type 2 Inflammation. A Clinical Observational Study

Lipid Biomarkers in Urine Can Determine the Type of Asthma:

The U-BIOPRED Severe Asthma Study: Immunopathological Characterization

Novel Urine Test Developed to Diagnose Human Kidney Transplant Rejection

A Urine Test for Bladder Cancer: Available Soon in Primary Care?

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

University of East Anglia Researchers Develop Non-Invasive Prostate Cancer Urine Test

The researchers believe their test ‘could reduce the number of unnecessary prostate cancer biopsies by 32%,’ UEA reported

New diagnostic technologies may make it possible for men to provide a urine sample that can allow a clinical laboratory to not only accurately diagnose prostate cancer but also help determine whether it is an aggressive form of prostate cancer. Researchers in the United Kingdom (UK) recently described just such a test in an online, peer-reviewed journal.

Development of a non-invasive method of diagnosing prostate cancer would be significant for anatomic pathologists in the United States. In the US alone, approximately 248,000 men will be diagnosed with this type of cancer in 2021. Prostate biopsies represent a major proportion of case referrals to community pathology groups.

Moreover, were such a non-invasive test for prostate cancer also able to identify those individuals with fast-growing prostate cancers, that would help urologists make more informed treatment decisions.

A Disease Men More Commonly Die ‘With’ Rather than ‘From’

According to CDC statistics, most men over the age of 80 will have some form of slow-growing prostate cancer when they die. However, a percentage of men each year contract a rapidly growing aggressive form of the cancer, and until recently, diagnosing which cancer a patient was fighting often required multiple invasive prostate needle biopsies. But that may soon change.

Researchers at the University of East Anglia (UEA) Norwich Medical School in the United Kingdom (UK) have developed a non-invasive urine test for prostate cancer that they say also can determine the aggressiveness of the disease. Knowing this may help physicians better assess a patient’s risk prior to ordering invasive needle biopsies, a UEA article notes.

The UEA test may also allow for self-collection of the biological sample, and if it proves accurate, the test could bring additional revenue to clinical laboratories that would perform the urine testing.

The UEA researchers published their study in the peer-reviewed open-access journal Cancers, titled, “Integration of Urinary EN2 Protein and Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy.”

“In this work we develop a test that predicts whether a patient has prostate cancer and how aggressive the disease is from a urine sample. This model combines the measurement of a protein-marker called EN2 and the levels of 10 genes measured in urine and proves that integration of information from multiple, non-invasive biomarker sources has the potential to greatly improve how patients with a clinical suspicion of prostate cancer are risk-assessed prior to an invasive biopsy,” they wrote.

“While prostate cancer is responsible for a large proportion of all male cancer deaths, it is more commonly a disease men die with rather than from,” said Daniel Brewer, PhD, one of the lead researchers on this study. “Therefore, there is a desperate need for improvements in diagnosing and predicting outcomes for prostate cancer patients to minimize over-diagnosis and overtreatment whilst appropriately treating men with aggressive disease, especially if this can be done without taking an invasive biopsy.

“Invasive biopsies come at considerable economic, psychological, and societal cost to patients and healthcare systems alike,” he added. Brewer is Senior Lecturer in Cancer Bioinformatics and a group leader within the Cancer Genetics Team at UEA’s Norwich Medical School.

Daniel-Brewer-PhD

“Our new urine test not only shows whether a patient has prostate cancer, but it importantly shows how aggressive the disease is. This allows patients and doctors to select the correct treatment,” said Daniel Brewer, PhD (above), Senior Lecturer and Lead Researcher, UEA Norwich Medical School, in the news release. (Photo copyright: Eastern Daily Press.)

Possibility of Reducing Needle Biopsies by 32%

Called “ExoGrail,” the UEA’s new test builds on their earlier development of the Prostate Urine Risk (PUR) and ExoMeth tests. The test works by integrating two biomarkers.

  • Measurements of EN2, a protein-marker, and
  • Levels of gene expression of 10 genes related to prostate cancer.

The researchers tested ExoGrail on urine samples from 207 patients at Norfolk and Norwich University Hospital (NNUH) who also had needle biopsy samples available.

According to the published study, the UEA ExoGrail urine test enabled:

  • Results comparable to the biopsy findings.
  • Identification of people with prostate cancer and people without it.
  • Risk scoring that noted aggressive prostate cancer and need for biopsy.
  • Potential to reduce unnecessary biopsies by 32%.

“ExoGrail resulted in accurate predictions even when serum PSA [protein-specific antigen] levels alone proved inaccurate; patients with a raised PSA but negative biopsy result possessed ExoGrail scores significantly different from both clinically benign patients and those with low-grade Gleason 6 disease, whilst still able to discriminate between more clinically significant Gleason ≥ 7 cancers,” the researchers stated in their published study.

“The adoption of ExoGrail into current clinical pathways for reducing unnecessary biopsies was considered, showing the potential for up to 32% of patients to safely forgo an invasive biopsy without incurring excessive risk,” they noted.

Prostate Cancer Patients May Soon Have Options

While more research is needed, the new UEA Norwich Medical School ExoGrail test introduces compelling non-invasive methods for diagnosing prostate cancer. Patients with findings of aggressive cancer can proceed to biopsies, while others determined to have non-aggressive forms of prostate cancer may be able to avoid more invasive tests and the associated costs and stress.

Additionally, men may soon be able to collect their own specimens without the need to visit the primary care doctor or a patient service center.

A follow-up study underway at the University of East Anglia and the NNUH involves sending 2,000 men in the UK, Europe, and Canada home testing “prostate screening boxes” to “to collect men’s urine samples at-home,” according to a UEA new release, which noted that “the Prostate Screening Box has been developed in collaboration with REAL Digital International Limited to create a kit that fits through a standard letterbox.”

“We have developed the PUR (Prostate Urine Risk) test, which looks at gene expression in urine samples and provides vital information about whether a cancer is aggressive or ‘low risk,’” said Jeremy Clark, PhD, Senior Research Associate at UEA’s Norwich Medical School.

“The Prostate Screening Box part sounds like quite a small innovation, but it means that in future the monitoring of cancer in men could be so much less stressful for them and reduce the number of expensive trips to the hospital,” he added.

Anatomic pathologists and clinical laboratory managers will want to follow the progress of these clinical studies. A non-invasive, urine-based test for prostate cancer could be a game-changer if it can detect prostate cancer with comparable accuracy to the tissue-based diagnostics that are the current standard of care in the diagnosis of prostate cancer.

—Donna Marie Pocius

Related Information:

Integration of Urinary EN2 Protein and Cell-Free RNA Data in the Development of a Multivariable Risk Model for the Detection of Prostate Cancer Prior to Biopsy

New Prostate Cancer Urine Test Shows How Aggressive Disease Is and Could Reduce Invasive Biopsies

Tests to Diagnose and Stage Prostate Cancer

Prostate Cancer Key Statistics

UEA Researchers Develop Prostate Cancer Test That Could Reduce Biopsies

Thousands of Men to Trial Prostate Cancer Home Testing Kit

A Tale of Two Countries: As the US Ramps Up Medical Laboratory Tests for COVID-19, the United Kingdom Falls Short

Media reports in the United Kingdom cite bad timing and centralization of public health laboratories as reasons the UK is struggling to meet testing goals

Clinical pathologists and medical laboratories in UK and the US function within radically different healthcare systems. However, both countries faced similar problems deploying widespread diagnostic testing for SARS-CoV-2, the novel coronavirus that causes COVID-19. And the differences between America’s private healthcare system and the UK’s government-run, single-payer system are exacerbating the UK’s difficulties expanding coronavirus testing to its citizens.

The Dark Daily reported in March that a manufacturing snafu had delayed distribution of a CDC-developed diagnostic test to public health laboratories. This meant virtually all testing had to be performed at the CDC, which further slowed testing. Only later that month was the US able to significantly ramp up its testing capacity, according to data from the COVID Tracking Project.

However, the UK has fared even worse, trailing Germany, the US, and other countries, according to reports in Buzzfeed and other media outlets. On March 11, the UK government established a goal of administering 10,000 COVID-19 tests per day by late March, but fell far short of that mark, The Guardian reported. The UK government now aims to increase this to 25,000 tests per day by late April.

This compares with about 70,000 COVID-19 tests per day in Germany, the Guardian reported, and about 130,000 per day in the US (between March 26 and April 14), according to the COVID Tracking Project.

“Ministers need to explain why the NHS [National Health Service] is not testing to capacity, why we are falling behind other countries, and what measures they will put in place to address this situation as a matter of urgency,” MP Keir Starmer (above) said in Parliament in late March, The Guardian reported. (Photo copyright: The Guardian.)

What’s Behind the UK’s Lackluster COVID-19 Testing Response

In January, when the outbreak first hit, Public Health England (PHE) “began a strict program of contact tracing and testing potential cases,” Buzzfeed reported. But due to limited medical laboratory capacity and low supplies of COVID-19 test kits, the government changed course and de-emphasized testing, instead focusing on increased ICU and ventilator capacity. (Scotland, Wales, and Northern Ireland each have separate public health agencies and national health services.)

Later, when the need for more COVID-19 testing became apparent, UK pathology laboratories had to contend with global shortages of testing kits and chemicals, The Guardian reported. At present, COVID-19 testing is limited to healthcare workers and patients displaying symptoms of pneumonia, acute respiratory distress syndrome, or influenza-like illness, PHE stated in “COVID-19: Investigation and Initial Clinical Management of Possible Cases” guidance.

Another factor that has limited widespread COVID-19 testing is the country’s highly-centralized system of public health laboratories, Buzzfeed reported. “This has limited its ability to scale and process results at the same speed as other countries, despite its efforts to ramp up capacity,” Buzzfeed reported. Public Health England, which initially performed COVID-19 testing at one lab, has expanded to 12 labs. NHS laboratories also are testing for the SARS-CoV-2 coronavirus, PHE stated in “COVID-19: How to Arrange Laboratory Testing” guidance.

Sharon Peacock, PhD, PHE’s National Infection Service Interim Director, Professor of Public Health and Microbiology at the University of Cambridge, and honorary consultant microbiologist at the Cambridge clinical and public health laboratory based at Addenbrookes Hospital, defended this approach at a March hearing of the Science and Technology Committee (Commons) in Parliament.

“Laboratories in this country have largely been merged, so we have a smaller number of larger [medical] laboratories,” she said. “The alternative is to have a single large testing site. From my perspective, it is more efficient to have a bigger testing site than dissipating our efforts into a lot of laboratories around the country.”

Writing in The Guardian, Paul Hunter, MB ChB MD, a microbiologist and Professor of Medicine at University of East Anglia, cites historic factors behind the testing issue. The public health labs, he explained, were established in 1946 as part of the National Health Service. At the time, they were part of the country’s defense against bacteriological warfare. They became part of the UK’s Health Protection Agency (now PHE) in 2003. “Many of the laboratories in the old network were shut down, taken over by local hospitals or merged into a smaller number of regional laboratories,” he wrote.

US Facing Different Clinical Laboratory Testing Problems

Meanwhile, a few medical laboratories in the US are now contending with a different problem: Unused testing capacity, Nature reported. For example, the Broad Institute of MIT and Harvard in Cambridge, Mass., can run up to 2,000 tests per day, “but we aren’t doing that many,” Stacey Gabriel, PhD, a human geneticist and Senior Director of the Genomics Platform at the Broad Institute, told Nature. Factors include supply shortages and incompatibility between electronic health record (EHR) systems at hospitals and academic labs, Nature reported.

Politico cited the CDC’s narrow testing criteria, and a lack of supplies for collecting and analyzing patient samples—such as swabs and personal protective equipment—as reasons for the slowdown in testing at some clinical laboratories in the US.

Challenges Deploying Antibody Tests in UK

The UK has also had problems deploying serology tests designed to detect whether people have developed antibodies against the virus. In late March, Peacock told members of Parliament that at-home test kits for COVID-19 would be available to the public through Amazon and retail pharmacy chains, the Independent reported. And, Politico reported that the government had ordered 3.5 million at-home test kits for COVID-19.

However, researchers at the University of Oxford who had been charged with validating the accuracy of the kits, reported on April 5 that the tests had not performed well and did not meet criteria established by the UK Medicines and Healthcare products Regulatory Agency (MHRA). “We see many false negatives (tests where no antibody is detected despite the fact we know it is there), and we also see false positives,” wrote Professor Sir John Bell, GBE, FRS, Professor of Medicine at the university, in a blog post. No test [for COVID-19], he wrote, “has been acclaimed by health authorities as having the necessary characteristics for screening people accurately for protective immunity.”

He added that it would be “at least a month” before suppliers could develop an acceptable COVID-19 test.

Meanwhile, in the US, on April 1 the FDA issued an Emergency Use Authorization (EUA) for the qSARS-CoV-2 IgG/IgM Rapid Test developed by Cellex Inc. in N.C., the Washington Times reported. Cellex reported that its test had a 93.75% positive agreement with a PCR (polymerase chain reaction) test and a 96.4% negative agreement with samples collected before September 2019.

In the United States, the Cellex COVID-19 test is intended for use by medical laboratories. As well, many research sites, academic medical centers, clinical laboratories, and in vitro diagnostics (IVD) companies in the US are working to develop and validate serological tests for COVID-19.

Within weeks, it is expected that a growing number of such tests will qualify for a Food and Drug Administration (FDA) Emergency Use Authorization (EUA) and become available for use in patient care.

—Stephen Beale

Related Information:

Why the UK Failed to Get Coronavirus Testing Up to Speed

Even the US Is Doing More Coronavirus Tests than the UK. Here Are the Reasons Why

Fall in Covid-19 Tests Putting Lives at Risk, Critics Claim

UK Ministers Accused of Overstating Scale of Coronavirus Testing

Coronavirus: Government Sets Target for 100,000 Tests Per Day by End of Month

Coronavirus Test: UK To Make 15-Minute At-Home Kits Available ‘Within Days’

Coronavirus: Can I Get a Home Testing Kit and What Is an Antibody Test?

Covid-19 Testing in the UK: Unpicking the Lockdown

Current COVID-19 Antibody Tests Aren’t Accurate Enough for Mass Screening, Say Oxford Researchers

Thousands of Coronavirus Tests Are Going Unused in US Labs

Exclusive: The Strongest Evidence Yet That America Is Botching Coronavirus Testing

Coronavirus Testing Hits Dramatic Slowdown in US

Coronavirus Testing Is Starting to Get Better—But It Has a Long Way to Go

Was It Flu or the Coronavirus? FDA Authorizes First COVID-19 Antibody Test

Medical Laboratories Need to Prepare as Public Health Officials Deal with Latest Coronavirus Outbreak

;