News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel

News, Analysis, Trends, Management Innovations for
Clinical Laboratories and Pathology Groups

Hosted by Robert Michel
Sign In

Smart Pacifier That Monitors Electrolyte Levels in Saliva Could Prove to Be Beneficial for Vital Care of Infants in Newborn Intensive Care Units

Tiny sensors with Bluetooth technology that measure useful biomarkers may eliminate need for invasive blood draws used for clinical laboratory tests

What if a baby’s pacifier could be used to measure electrolyte levels in newborns? An international research team has developed just such a device, and it has the potential to reduce invasive blood collections required to provide specimens for clinical laboratory testing of critical biomarkers. At the same time, this device may allow continuous monitoring of electrolyte levels with wireless alerts to caregivers.

Developed at Washington State University (WSU) Vancouver with researchers from the United States and South Korea, the wireless bioelectronic pacifier monitors electrolyte levels in newborn intensive care unit (NICU) babies and sends the collected data to caregivers and hospital information systems in real time.

Reliable Information from Consistent Monitoring

Typical blood draws for NICU babies can cause information gaps as they are usually  only performed twice a day. This can be problematic in cases where more frequent monitoring of these biomarkers is required to monitor the infant’s condition.

“We know that premature babies have a better chance of survival if they get a high quality of care in the first month of birth,” said Jong-Hoon Kim, PhD, Associate Professor at the WSU School of Electrical Engineering and Computer Science, in a WSU news release. “Normally, in a hospital environment, they draw blood from the baby twice a day, so they just get two data points. This device is a non-invasive way to provide real-time monitoring of the electrolyte concentration of babies.”

Kim is a co-corresponding author of the WSU study published in the peer-reviewed journal Biosensors and Bioelectronics, titled, “Smart Bioelectronic Pacifier for Real-Time Continuous Monitoring of Salivary Electrolytes.”

The smart pacifier (above) developed by researchers at the Washington State University School of Electrical Engineering and Computer Science—in collaboration with scientists in two South Korean institutions—provides continuous monitoring of sodium and potassium ion levels. This can help detect and prevent potentially dangerous dehydration issues in NICU babies without invasive blood draws for traditional clinical laboratory testing. (Photo copyright: University of Washington.)

How the Smart Pacifier Works

The miniature system developed by the WSU researchers utilizes a typical, commercially available pacifier outfitted with ion-selective sensors, flexible circuits, and microfluidic channels that monitor salivary electrolytes. These flexible, microfluidic channels attract the saliva when the pacifier is in the infant’s mouth which enables continuous and efficient saliva collection without the need for any type of pumping system. The gathered data is relayed wirelessly to caregivers using Bluetooth technology.

When the researchers tested their smart pacifier on infants, they discovered that the results captured from the device were comparable to information obtained from normal blood draws and standard clinical laboratory tests. Kim noted in the press release that technology currently in use to test infant saliva for electrolytes tend to be bulky, rigid devices that require a separate sample collection.

“You often see NICU pictures where babies are hooked up to a bunch of wires to check their health conditions such as their heart rate, the respiratory rate, body temperature, and blood pressure,” said Kim in the press release. “We want to get rid of those wires.”

The researchers intend to make the components for the device more affordable and recyclable. They also plan to perform testing for their smart pacifier on larger test groups to prove efficacy and hope the gadget will help make NICU treatment less disruptive for infant patients.

Co-authors on the WSU study include researchers from the Georgia Institute of Technology, and Pukyong National University and Yonsei University College of Medicine in South Korea.

Before the ‘Smart’ Pacifier Were ‘Smart’ Diapers!

Going as far back as 2013, Dark Daily has covered research into the use of sensors placed in wearables and disposables to detect and monitor health issues.

In “New ‘Smart Diaper’ Tests Baby’s Urine for Urinary Tract Infections, Dehydration, and Kidney Problems—then Alerts Baby’s Doctor,” Dark Daily reported on how the advent of digital technology and smartphones was moving medical laboratory testing out of the central laboratory and into the bedside, homes, and into diapers!

And this past fall, in “Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults,” we reported on researchers who were combining diagnostics with existing products to help medical professionals and patients monitor bodily functions and chronic diseases.

“It should be noted that the ability to put reliable diagnostic sensors in disposables like diapers has been around for almost a decade and does not seem to have caught on with either caregivers or the public,” said Robert Michel, Editor-in-Chief of Dark Daily and its sister publication, The Dark Report. “Because the researchers who developed the pacifier are attempting to solve a problem for NICU babies, this solution might find acceptance.”

This is another example of how researchers are thinking outside the box as to how to measure critical biomarkers without the need to send a specimen to the core clinical laboratory and wait hours—sometimes overnight—for results.

JP Schlingman

Related Information:

Smart Pacifier Developed to Monitor Infant Health in Hospitals

Smart Bioelectronic Pacifier for Real-time Continuous Monitoring of Salivary Electrolytes

Researchers in Japan Have Developed a ‘Smart’ Diaper Equipped with a Self-powered Biosensor That Can Monitor Blood Glucose Levels in Adults

New ‘Smart Diaper’ Tests Baby’s Urine for Urinary Tract Infections, Dehydration, and Kidney Problems—then Alerts Baby’s Doctor

Full Genome Sequencing of All Animal Species Continues, but Sequencing of Invertebrate Species Lags Behind That of Vertebrate Species

Scientists working to sequence all 1.66 million animal species say this is a missed opportunity to better understand our own genetics; such research would identify biomarkers useful for clinical laboratory testing

For 23 years, the world’s genomic scientists have been on a mission to sequence the genomes of all animal species. And they’ve made great progress. However, according to a recent study conducted by researchers at Washington State University (WSU) and Brigham Young University (BYU), only a fraction of the sequences are from invertebrate species. And that, according to the study’s authors, is “overlooking huge swathes of diversity and opportunity.”

The push to sequence the whole genomes of all animals began in 1998 with the sequencing of the Caenorhabditis elegans roundworm, according to a WSU news release. It was the first animal genome sequence, but it was not to be the last. Nearly 25 years later, genomic scientists have sequenced about 3,300 animal genomes. And while that’s a lot of genomic sequences, it’s a drop in bucket of the approximately 1.7 million animal species on the planet.

But here’s where the missed opportunity comes in. According to the WSU news release, “Vertebrates account for 54% of all genome sequencing assemblies, despite representing only 3.9% of animal species. In contrast, the invertebrates of the Arthropoda phylum, which includes insects and spiders, comprise only 34% of current datasets while representing 78.5% of all species.”

Paul Frandsen, PhD

“We are interested in ourselves, and that’s not necessarily a bad thing,” said Paul Frandsen, PhD (above), in the news release. Frandsen is Assistant Professor of Genetics, Genomics, and Biotechnology at Brigham Young University and one of the study authors. “But to begin to understand entire ecosystems,” he continued, “we have to start sampling more of the variety of life to gain a clearer picture. Vertebrates are important components of ecosystems, but arguably insects and many other small creatures probably play an even more important role because they’re down at the base of the food web.” (Photo copyright: Brigham Young University.) 

The WSU/BYU researchers described their findings in the journal Proceedings of the National Academy of Sciences (PNAS), titled, “Toward a Genome Sequence for Every Animal: Where Are We Now?

Are Hominids More Charismatic?

The scientists analyzed the best available genome assemblies found in GenBank, the world’s most extensive genetic database. They found that 3,278 unique animal species across 24 phyla, 64 classes, and 258 orders have been sequenced and assembled to date.

They also found that sequencing efforts have focused heavily on species that most resemble humans. The Hominidae, a taxonomic family of primates that includes humans as well as great apes, bonobos, chimpanzees, orangutans, and gorillas, has the most contiguous genome data assembled.

The team discovered that vertebrates account for 54% of the animal genome sequencing that has been performed even though they make up less than four percent of known animal species. By comparison, invertebrates of the Arthropoda phylum, which represent 78.5% of all animal species, comprise only 34% of the completed animal genome sequencing. And yet, the Arthropoda phylum is the largest phylum in the animal kingdom and includes insects, spiders, scorpions, centipedes, millipedes, crabs, crayfish, lobsters, and barnacles.

“With genome assemblies accumulating rapidly, we want to think about where we are putting our efforts. It’s not being spread evenly across the animal tree of life,” said lead author Scott Hotaling, PhD, post-doctoral researcher at WSU, in the news release. “Invertebrates are still very underrepresented, which makes sense given that people seem to care more about vertebrates, the so-called ‘charismatic megafauna.’”

The team discovered that only five arthropod groups: ants, bees, butterflies, fruit flies, and mosquitos, were well represented in genome sequencing. The longest genome sequenced so far belongs to the Australian lungfish, the only surviving member of the family Neoceratodontidae.

1,100 Years to Sequence All Eukaryotic Life

The scientists also discerned that animal genome assemblies have been produced by 52 countries on every continent with permanent inhabitants. The majority of animal genome sequencing (77%) that is being performed is mostly occurring in developed countries located in the Northern Hemisphere, often referred to as the Global North. Nearly 70% of all animal genome assemblies have been produced by just three countries: the United States, China, and Switzerland.

There are geographic differences between regions regarding the types of animals being sequenced and assembled with North America concentrating on mammals and insects, Europe focusing on fish, and birds being the main type of animals sequenced in Asia.

The scientists would like to see more animal genome sequencing happening in countries from the Global South, or Southern Hemisphere, particularly in tropical regions that contain a myriad of diversity among animal species.

“If we want to build a global discipline, we need to include a global people,” Hotaling said. “It’s just basic equity, and from a pure scientific standpoint, the people who live in areas where species are being sequenced have a lot of knowledge about those species and ecosystems. They have a lot to contribute.”

But the WSU/BYU scientists found that many species in GenBank only have low-quality assemblies available. They noted that “the quality of a genome assembly is likely the most important factor dictating its long-term value.”

Fortunately, several animal genome sequencing ventures have been announced in recent years, so the amount of available data is expected to rise exponentially. These projects include:

The authors of the PNAS paper noted that there are currently only about four genome assemblies happening each day and, at that rate, the sequencing of all eukaryotic life will not be completed until the year 3130.

So, microbiologists, clinical laboratory professionals, and genomic scientists have plenty of time to get up to speed.

JP Schlingman

Related Information:

Toward a Genome Sequence for Every Animal: Where are We Now?

Big Gaps in Quest to Sequence Genomes of All Animals

Genomes of Other Organisms: DNA Barcoding and Metagenomics

Biologists Propose to Sequence the DNA of All Life on Earth

Multi-channel Smartphone Spectrometer Enables Clinical Laboratory Testing Quickly and Accurately in Remote Regions

Researchers say high accuracy of this $150 portable optical spectrometer enables mobile diagnostic technologies to achieve pathology test results comparable to traditional spectrometers costing far more

What’s the latest thing in a smartphone diagnostic device? It’s a multi-channel smartphone spectrometer! Researchers at Washington State University (WSU) designed the device to detect human cancer biomarkers. It’s hoped that this device can improve cancer detection in rural areas where clinical laboratories may not be easily accessible.

The Multichannel Smartphone Spectrometer (MSS) is a highly accurate, low-cost, portable diagnostic device capable of detecting human cancer biomarkers equally well in rural and busy hospital settings. (more…)

;